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Abstract 

The common empirical time series modeling assumes linearity and stationarity in the relationship between 
the variables. However, most applied time series research finds it difficult to assume linearity in data. 
Therefore, nonlinear models could be more representative of such data generation processes. To achieve 
this type of phenomenon in time series data, a suitable order and threshold regime number needs to be 
specified for nonlinear time series models which is the focus of this study. The nonlinear model considered 
in this study is the Self-Exiting Threshold Autoregressive (SETAR) model. The model is used to fit and 
forecast simulated nonlinear autoregressive functions at different sample sizes and steps ahead respectively. 
The SETAR of 2 and 3 autoregressive orders (p) within a regime and 2 and 3 regimes orders (d) are fitted 
at different sample sizes. The relative performances of the models [SETAR (p, d)] are examined to identify 
the best autoregressive and regime orders within the context of stationarity. Results showed that the 
SETAR (3, 2) and SETAR (2, 2) are the best for fitting small & moderate, and large sample sizes 
respectively in both the simulated and real-life data. Also, the best forecast models are SETAR (3, 2) 
followed by SETAR (2, 2) at different steps ahead. Finally, it is revealed that; there is an increase in fitting 
and forecasting performances of all the models when the sample sizes and the number of steps ahead are 
increased. 

Keywords: SETAR Model, Regime order, Autoregressive order, simulation technique. 

1.0 Introduction 

Time series is a sequence of data collected sequentially over time. It involves consecutive observations on 
finite variables that are made over time (Cochrane, 2005). Typically, the observed data are sequential at 
fixed intervals (daily, monthly, quarterly, and yearly).  Monthly data for unemployment, weekly supply and 
demand, quarterly interest rate and daily profit, day-to-day sales, yearly share prices, weekly flooding 
observed are time-series data. 

There are two main purposes of time series analysis; these are to provide a model to a successive 
observation or understand the stochastic mechanism of a series of observation and to predict for upcoming 
observations from the present and past of that series and probably, additional associated factors and/or 
information (Akeyede et al, 2015).  

The common empirical time series modeling assumes linearity and stationarity in the variables’ 
relationship. However, most applied research finds it appropriate to assume linearity. Recently, arguments 
have been presented, that nonlinear specification may be a more realistic representation of data generation 
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processes (Franses and van Dijk, 2000). To accommodate this kind of dynamic behavior using time series 
data, regime-switching models like threshold models have been introduced (Granger and Terasvirta, 1993). 
This study therefore aimed at determining suitable autoregressive and regime orders for the Self-Exiting 
Threshold Autoregressive (SETAR) model in fitting and forecasting nonlinear time series models under the 
assumption of stationarity. 

1.1      Nonlinear Autoregressive Models 

A nonlinear model is the one in which the relationship between two variables has a more broad functional 
dependency over time than the linear system of the model. Nonlinear models for time series are capable of 
capturing asymmetry, jump, wave, and other nonlinear behaviours, for instance, the inflation rates increase 
more rapidly than it falls. As far back as 1970, many classes of nonlinear time series modeling have been 
proposed.  

It is well known that the nonlinear models offer a considerably broader range of likely dynamics in time 
series data than the linear counterpart. (Tong, 1978 and 1983] and (Tong and Lim, 1980) proposed the 
nonlinear autoregressive model which has a regime-switching technique explaining intermittent features of 
time series data and widely described in (Tong, 1990). This time series model that captures the vigorous 
characteristics of time series data by substituting the regimes is referred to as the Threshold Autoregressive 
(TAR) model. The structures of this form of time series models are jump marvels, wave, and limit cycles 
that cannot be captured by simple linear autoregressive function. 

The application of the TAR model is commonly found in economic and financial time series most 
especially there are many works on price transmissions and agricultural marketing which shows that there 
is an irregularity in the change of prices at different levels of the marketing systems.  

Currently, the TAR model bids us exciting likelihoods. The general form of the model proposed by Tong 
(1990) is presented as follows: 

                                                 y� = ∅�
(��)

+ � ∅�
(��)

y��� +

�

�� �

��
(��)

,                                                                  (1) 

where ��
(��))

are independently and identically distributed with zero means and positive variance 

i.e��
(��)

 ~ NII� (0,��) within (s�)(s�)    are random variables, assume finite values in {1,. . . ,s} and serve as 
indicators and determined by a threshold variable y� (see Tong, 1983; Tong, 1990; Hamilton, 1989). The 
model performances as a switching mechanism.    

1.2 The Self-Exciting Threshold Autoregressive (SETAR) Model 

One of the common forms of nonlinear time series models with threshold phenomena is a Self-Exciting 
Threshold Autoregressive (SETAR) model. The SETAR model is an extension of autoregressive models, 
which are classically fitted to time series data to allow some amount of flexibility in model parameters 
through regime-changing behaviours. 

The SETAR models [Tong 1978, Tong, 1983] have been broadly engaged to describe several observed 
features of time series data (This can be found in the literature like (Watier and Richardson, 1995) on 
applications of epidemiology and (Clements and Smith, 2001) for water pollution. (Tong 1990) enlists 
various areas of application of the SETAR model while forecasting the enactment and statistical properties 
of the models can be found in (Tong, 1990) and (de Goojier, 2001). The Self-Exciting Threshold 
Autoregressive models are relatively simple to evaluate, postulate, and understand relative to other 
nonlinear models. A SETAR(d,p�,� = 1,… �) ���ℎ k − regime model is;  
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where, 

k is the regime's number of the SETAR model;  

�(�)is the order of the autoregressive within the ��� regime,  ∀� = 1,2,… ,�;  

� is the threshold value (−∞ =  r�  < r� < r� … < r��� < r� = ∞);  

���� is the threshold variable that runs the changes from one regime to another. The parameter (�) is a 
delay parameter where (� <  � ) and d is a non-negative integer,  

��
(�)

is an i.i.d. white noise process with zero mean and positive constant variance,  ��
�, ��

� < ∞. 

The superscripts in the model specify positions of the regime and in every regime, it is expected that the 
dynamical behaviors of the time series variable assume a linear autoregressive process.  

Note that, if homogeneity of variance among the regimes is assumed (σ�
�  =  σ�

�  =  …  =  σ�
�  =  σ�

�), the 
sample pooled variance σ�

� is estimated which serves as a common variance in the data. From the regime 
that is functioning at every time �is dependent on past values of {Y�}itself, specifically, the value of Y���. 
Therefore, (Tong and Lim, 1980), calls (2) a SETAR model.  

1.3 The Regime and Order Selection 

In time-series analysis, regime-switching models allow parameters to assign different values in every 
regime of the model. Regime-switching models are categorized into two namely; Markov-switching and 
threshold models. The main modification amongst these methods is how the development of the procedure 
is demonstrated. For example, in the threshold models, presented by (Tong, 1978), the regime shifts are 
generated by the status of experimental variables about some unobserved threshold variables is assumed. 
Sometimes the regime shifts progress according to a Markov chain, see for example (Cosslett and Lee, 
1985) and (Hamilton, 1989). The models are popularly used in economic output measures, e.g Per Capital 
Income and total revenue, which are used to fit, identify, and forecast the stages of the commercial phase. 
Such models can be found in (Hamilton, 1989 and Kim et al, 2005). 

2.0    Methodology 

A set of data was simulated repeatedly with fixed parameter values and sample sizes under the assumption 
of stationarity from nonlinear autoregressive processes of second-order with trigonometric function 
inequation(3). This is the form of the nonlinear autoregressive processes considered for the simulation and 
is given by; 

y� = ∅�sin (y���)+ ∅�cos (y���)+ ��                    (3) 

where y� the present value of the nonlinear series; 



118 Regime and Order Selection for SETAR Time Series Model  

 

 
 

ASTA, Vol. 2, November, 2019 
www.pssng.org 

y��� and y���are past values of order one and two respectively. Note that the response y� is a nonlinear 
dependence on the combination of the first and second-order of past/ recent values and an ‘innovation’ term 
ε� that introduced some new things in the model at a particular time t that is not described by the previous 
observations. The model in (3) was extracted from the idea of (Akeyede et al, 2015) 

Parameters values specified for equation (3) are ∅� = 0.7 ��� ∅� = −0.2. the sample sizes that were 
considered in the simulation study are 20, 40, 60, 80, 100, 120, 140, 160, 180, and 200. At a particular 
choice of sample size, the simulation study was performed 1000 times which forms 1000 iterations for each 
case. 

Furthermore, some steps ahead forecasting for sample sizes of 20, 100, and 200 only were also simulated, 
which represent low, moderate, and high sample sizes respectively to predict h-predicting steps of 5,  10, 
…, 50 of data generated from second-order autoregressive function. Data were simulated under stationarity 
assumption for response variables and error terms from; 

���~ �(0,1)��� ���~ �(0,1),� = 1,… ,1000 

The error term was generated from the normal distribution family of mean and variance to be zero and one 
respectively to ensure a white noise process in the model and therefore the data generated from these series 
could be stationary. SETAR (p,d) models were assessed using two criteria namely; Mean Square Error 
(MSE) and Akaike Information Criteria (AIC). MSE and AIC were computed for different sample sizes 
and forecasting of steps and models with the least criteria were considered as the best among the models. 

2.1 Forecasting of SETAR Model 

The following procedure is carried out in making a forecast with a SETAR model. Considering the 
observation Y�, Y�,. . . , Y�, a forecast is made using the SETAR model by taking a weighted mean of the 
prediction from the 1st and 2nd  regimes. At a particular time t, for a p step ahead, these forecasted values 

are represented by Y��,��� for the 1st regime andY��,��� for the 2nd regime. This is presented as follows:   

                                                                       Y��,��� = ∅�,� + ∅�,�Y��,�����,                                                      (4) 

and 

                                                                      Y��,��� = ∅�,� + ∅�,�Y��,�����                                                     (5) 

The forecast of Y���, denoted Y����, is then obtained by:  

                          Y���� = p���Y��,��� + �1 − p����Y��,����� +  (∅�,� + ∅�,�) σ������Ø �
��Ŷ�����

�������
�,            (6) 

for p =  2,… .The weight � − 1 is the chance of being in the lower regime at time � +  � − 1 in the 

process where, Ø �
��Ŷ�����

�������
� is assumed to be normal and Ø(. ) is the pdf of N (0,1) and σ������ is the 

residuals’ variance at time �. 

SubstitutingY��,���Y��,���,and p���, in (6), the following recursive equation is obtained for approximate p −

horizon (p >  1) ahead:       

Y���� =  Ø �
��Ŷ�����

�������
� (∅�,� +  ∅�,�Y� �����,)+ Ø �

��Ŷ�����

�������
� (∅�,� +  ∅�,�Y� �����,)+ Ø �

��Ŷ�����

�������
� �∅�,� +

 ∅�,��σ������                                        (7) 
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For more details, see (Clements, M. P. and Smith, 2001) and (de Goojier, and. de Bruin, 1999)  

2.0      Data Analysis 

The performances of SETAR (p, d), where p, d = 2, 3, i.e. SETAR (2, 2), SETAR (2, 3), SETAR (3, 2) and 
SETAR (3, 3) were investigated, through simulation techniques at various sample sizes.  

Table 1: Results of Relative Performance of SETAR (p, d) Model at different Sample Sizes. 

Sample  
Size (n) 

MSE AIC 

SETAR 
( 2,2) 

SETAR 
( 2,3) 

SETAR 
( 3,2) 

SETAR 
( 3,3) 

SETAR 
( 2,2) 

SETAR 
( 2,3) 

SETAR 
( 3,2) 

SETAR 
( 3,3) 

20 0.9529 1.1211 0.9370 1.0884 3.5512 43.7319 4.1406 43.7450 
40 0.9488 1.1114 0.9312 1.0739 3.3015 39.8988 3.8982 39.6670 
60 0.9378 1.0976 0.9174 1.0568 2.5406 35.6485 2.9950 35.5255 
80 0.9273 1.0786 0.9053 1.0318 2.2822 31.3755 2.8977 31.1396 
100 0.9156 1.0560 0.8896 1.0012 2.2761 27.3449 2.7791 26.8995 
120 0.8925 1.0295 0.8610 0.9631 1.4753 23.6345 1.8456 22.8809 
140 0.8589 0.9777 0.8183 0.8948 0.7010 18.8351 0.7177 17.6305 
160 0.8175 0.9045 0.7626 0.8028 0.6712 14.5057 0.4310 13.1912 
180 0.7241 0.7448 0.6436 0.5955 -0.2483 8.4707 -1.1195 5.1741 
200 0.4700 0.5198 0.2427 0.0676 -2.8632 8.4652 -10.3487 -25.8792 

 

 

Fig. 1a: The plots ofMSE of SETAR (p, d) Model at different Sample Sizes 
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Fig. 1b: The plots of AIC of SETAR (p, d) Model at different Sample Sizes. 

The best order (p) and regime number (d) were determined under the SETAR (p, d) model in fitting and 
forecasting the simulated nonlinear autoregressive model in (3). The results of the analyses are provided in 
tables and presented on graphs as shown as follows.   

The average values of MSEs and AICs of each model at various sample sizes were recorded in table 1 and 
presented in figures 1a and 1b respectively. The best model to fit the nonlinear model is SETAR (3, 2) from 
a sample size of 20 to 180, followed by SETAR (2, 2) based on both MSE and AIC criteria. However, 
SETAR (3, 3) outperforms others from a sample size of 180 and above (large sample sizes).  

The worst model was observed from SETAR (2, 3)at all sample sizes. Hence the best autoregressive and 
regime orders to be selected for fitting nonlinear autoregressive time series data with small and moderate 
sample sizes are 3rd and 2nd autoregressive and regime orders respectively while those with large sample 
sizes can be fitted with 3rd autoregressive and regime orders respectively. Also, it was observed from 
figures 1a and 1b that there are increments in the performances of all the models when the sample size is 
improved, this was shown from a decrease in values of MSE and AIC as sample size increases. 

3.1 ForecastPerformances of SETAR (p, d) Models on Nonlinear Autoregressive Data 

Comparison of forecast ability among the four fitted models to simulated nonlinear autoregressive model 
when 20,100 ��� 200 (small, moderate, and large) sample sizes were used for simulations. The outcomes 
achieved were presented in figures 2a and 2b respectively. 

Table 2: Results of Relative Forecast Performance of SETAR (p, d) Model at Sample Size 20. 

Steps 
Ahead 

(h) 

MSE AIC 

SETAR 
( 2,2) 

SETAR 
( 2,3) 

SETAR 
( 3,2) 

SETAR 
( 3,3) 

SETAR 
( 2,2) 

SETAR 
( 2,3) 

SETAR 
( 3,2) 

SETAR 
( 3,3) 

5 0.6476 0.3823 7555.7600 4953.737 0.1302 -7.4221 4.1095 285.8044 
10 0.0004 0.2805 3098.6280 173.4843 -794.008 -8.1663 -5.0270 147.9873 
15 0.0002 0.0028 596.9272 50.6988 -1143.25 -1139.450 -6.4755 47.255 
20 1.23E-05 6.59E-23 6.5361 11.0204 -1325.35 -1409.370 -500.4990 -61.2087 
25 8.64E-14 4.25E-32 0.4206 1.5340 -1502.38 -1815.570 -1065.690 -110.4620 
30 6.41E-33 1.87E-33 0.2092 0.2589 -1883.62 -2280.250 -1085.020 -124.9340 
35 6.01E-33 1.83E-33 6.81E-05 0.0116 -2011.42 -2658.710 -1131.670 -778.7800 
40 2.18E-33 1.58E-33 1.52E-31 0.0005 -2719.69 -3036.880 -1551.560 -1231.020 
45 3.12E-34 1.39E-33 8.88E-33 6.38E-26 -3024.11 -3069.370 -1596.150 -1422.360 
50 1.96E-35 1.14E-33 6.77E-35 4.58E-28 -3152.83 -3419.260 -2177.550 -1605.840 
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Fig. 2a: The plots of MSE of Forecast Performances of SETAR (p, d) Model at Sample Size 20. 

Table 2 shows the means of MSEs and AICs obtained from forecasting values of each model at a sample 
size of 20. The best forecast model is SETAR (3, 2) from steps ahead of 5 to 45 especially based on AIC, 
and have a very close performance with SETAR (2,2) especially at small and moderate steps ahead (h). 
Moreso, the four models forecast nearly equal when h rises. Their forecast performance increases as the 
steps ahead increase when the sample size is 20. 

 

Fig. 2b: The plots of AIC Forecast Performance of SETAR (p, d) Model at Sample Size 20. 

 
Given the above results, the best autoregressive and regime orders to be selected for forecasting nonlinear 
autoregressive time series data with small and moderate steps ahead are 3rd& 2nd and 2nd& 2nd 
autoregressive and regime orders respectively. However, from moderate to large steps ahead any 
autoregressive and regime orders can be selected for forecasting nonlinear autoregressive time series data. 

Table 3: Results of Relative Forecast Performance of SETAR (p, d) Model at Sample Size 100. 

Steps 
Ahead 

(h) 

MSE AIC 

SETAR 
( 2,2) 

SETAR 
( 2,3) 

SETAR 
( 3,2) 

SETAR 
( 3,3) 

SETAR 
( 2,2) 

SETAR 
( 2,3) 

SETAR 
( 3,2) 

SETAR 
( 3,3) 

5 0.9248 0.8930 3.3361 324352.5 -10.8086 27.8947 43.0048 30.2536 
10 5.14E-08 0.8339 1.1072 6407.352 -780.779 5.5255 22.8250 19.7270 
15 9.88E-34 1.75E-33 0.7781 492.2123 -1154.91 -1145.710 14.1449 4.8300 
20 9.72E-34 1.72E-33 0.2885 138.5937 -1515.64 -1554.650 0.1240 -736.5140 
25 8.27E-34 1.47E-33 0.0306 0.9753 -1520.04 -1913.210 -803.8830 -1154.070 
30 2.2E-34 8.77E-34 0.0039 0.8231 -2301.89 -2260.300 -1063.570 -1392.130 
35 9.07E-35 5.42E-34 0.00389 0.7550 -2684.77 -2637.640 -1136.330 -1461.500 
40 8.58E-35 2.03E-34 4.4E-06 0.04858 -3123.85 -3054.820 -1365.450 -1717.410 
45 8.54E-35 1.09E-34 -1305.490 0.0122 -3602.56 -3452.140 -1859.950 -2103.140 
50 1.63E-35 7.08E-35 -1330.880 0.0003 -3991.13 -3891.980 -2743.700 -2195.300 
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Fig. 3a: The plots of MSE Forecast Performance of SETAR (p, d) Model at Sample Size 100. 

 

Fig. 3b: The plots of AIC Forecast Performance of SETAR (p, d) Model at Sample Size 100. 

Table 3 shows the means of MSEs and AICs obtained from forecasting values of each model at a sample 
size of 100. From the fig 3a and 3b, it was observed that SETAR (2, 3) and SETAR (2, 2) have the best 
forecast, as shown by the two criteria, at all step ahead levels followed by SETAR (2, 2) and SETAR (2, 3) 
respectively.  

The worst forecast models are SETAR (3, 3) based on MSE and SETAR (3, 2) based on AIC. Hence, the 
best autoregressive and regime orders to be selected for forecasting nonlinear autoregressive time series 
data at any level of steps ahead and sample size of 100 are 2nd, 3rd, and 2nd, 2nd autoregressive and regime 
orders respectively.  

Table 4 shows the average values of MSEs and AICs obtained from forecasting values of each model at a 
sample size of 200. From the fig 4a and 4b, it was observed that SETAR (2, 2) has the best forecast based 
on MSE from steps ahead of 5 and 10 (lower steps forecast) based on MSE. SETAR (3, 2) performs better 
than others from steps ahead of 10 to 50.  
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Table 4: Results of Relative Forecast Performance of SETAR (p, d) Model at Sample Size 200. 

Steps 
Ahead 

(h) 

MSE AIC 

SETAR 
( 2,2) 

SETAR 
( 2,3) 

SETAR 
( 3,2) 

SETAR 
( 3,3) 

SETAR 
( 2,2) 

SETAR 
( 2,3) 

SETAR 
( 3,2) 

SETAR 
( 3,3) 

5 0.9356 0.9817 1.0883 31.8660 24.1453 16.2064 50.0075 49.7832 
10 0.8652 0.9182 0.8735 4.1824 -14.9909 -40.7843 49.7913 33.0097 
15 3E-33 2.09E-33 0.3892 1.2028 -1153.28 -1191.900 -1130.250 16.7305 
20 2.76E-33 1.57E-33 0.3048 0.9757 -1539.38 -1522.860 -1151.850 -1481.800 
25 2.69E-33 7.8E-34 0.0197 0.9531 -1915.21 -1906.910 -1319.040 -1531.590 
30 1.17E-33 6.26E-34 0.0049 0.2659 -2264.44 -2312.910 -1433.500 -1772.700 
35 6.24E-34 5.97E-34 0.0011 0.1329 -2651.75 -2700.490 -1688.030 -1822.560 
40 6.04E-34 2.67E-34 0.0007 0.0001 -3045.56 -3078.180 -1969.350 -1943.300 
45 4.49E-34 2E-34 0.0002 4.53E-06 -3422.23 -3465.470 -2196.520 -1972.010 
50 1.86E-34 3.2E-35 1.03E-34 6.19E-34 -3777.24 -3744.38 -2705.330 -2577.360 

 

 

Fig.4a: The plots of MSE Forecast Performance of SETAR (p, d) Model at Sample Size 200. 

 

 

Fig.4b: The plots of AIC Forecast Performance of SETAR (p, d) Model at Sample Size 200. 
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The three other models competed well with SETAR (3, 2) in forecasting 50 steps ahead (highest steps 
ahead) based on MSE. Furthermore, based on AIC, SETAR (3, 2) has the best forecast at all levels of steps 
ahead followed by SETAR (2, 2).  

The best autoregressive and regime orders to be selected for forecasting nonlinear autoregressive time 
series data at any level of steps ahead and sample size of 200 are 2nd and 2nd followed by 3rd and 2nd based 
on MSE and 3rd and 2nd followed by 2nid and 2nd in respect to AIC respectively. The forecasting ability of 
the four models increased when the steps ahead are increased. 

3.0     Conclusion 

The best autoregressive and regime orders to be selected for fitting nonlinear autoregressive time series 
data with small and moderate sample sizes are 3rd and 2nd autoregressive and regime orders respectively 
while those with large sample sizes can be fitted with 3rd autoregressive and regime orders respectively. 
The performances of the four models increased when the sample increased, with a minimum value of MSE 
and AIC.  

Furthermore, the best autoregressive and regime orders to be selected for forecasting nonlinear 
autoregressive time series data with lower and moderate steps ahead and sample size of 20 are 
combinations of 3rd,  2nd, and 2nd, 2nd autoregressive and regime orders respectively. However, from 
moderate and higher steps ahead any autoregressive and regime orders can be selected for forecasting 
nonlinear autoregressive time series data.  

Moreso, for any level of steps ahead and sample sizes of 100, the best autoregressive and regime orders to 
be selected for forecasting nonlinear autoregressive time series data are 2nd autoregressive order and 2nd 
regime orders. So also, at any level of steps ahead and sample size of 200, the best autoregressive and 
regime orders to be selected for forecasting nonlinear autoregressive time series data are 3rd and 2nd 
followed by 2ndand 2nd. 

References 

Akeyede, I. Adeleke, B.L. and Yahya, W.B. (2015). On forecast Strength of some linear and nonlinear time series models for 
 stationary data structure,  American Journal of Mathematics and Statistics 2015, 5(4): 163-177  

Clements, M. P. and Smith, J. (2001). The performance of alternative forecasting methods for SETAR models, International Journal of 
 Forecasting 13, 463-75. 

 Cochrane, J. H. (2005). Time Series for Macroeconomics and Finance. Chicago: Graduate School of Business, University of Chicago. 

Cosslett, S. R. and Lee, L.-F. (1985). “Serial Correlation in Discrete Variable Models,” Journal of Econometrics 27, 79-97. 

de Goojier, J.G. (2001). On threshold moving-average models. Journal of Time Series Analysis, 19, 1–18.  

de Goojier, J.G. de Bruin P.T.  (1999). on forecasting SETAR processes,  Statistics and Probability Letters, 37, 7 - 14. 

Franses, P. H. and van Dijk D. (2000). Non-linear time series models in empirical finance, Cambridge, New York. 

Granger, C.W.J. and Terasvirta, T. (1993). Modelling Nonlinear Economic Relationships, Oxford University  Press, Oxford. 

Hamilton, J. D. (1989). A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle, 
Econometrica 57,  357-384.  

Kim, C.-J., Morley, J. and Piger, J. (2005). Nonlinearity and the Permanent Effects of Recessions, Journal of Applied Econometrics 
20, 291- 309.  

Tong, H. (1978). On a threshold model, Pattern Recognition and Signal Processing, Amsterdam: Sijthoff &Noordhoff, 3(2); 101-141. 



125 Imam et al. 

 

 

Tong, H. (1983). Threshold models in non-linear time series analysis, Lecture Notes in Statistics, No. 21, Heidelberg: Springer, 62-64. 

Tong, H. (1990). Non-linear Time Series: A Dynamical System Approach. Oxford: Oxford University Press. 

Tong, H. and Lim, K. S. (1980). Threshold autoregression, limit cycles and cyclical data (with discussion), Journal of the Royal 
Statistical  Society, Series B, Vol. 42(3), 245-292. 

Watier, L. and Richardson, S. (1995). Modelling of an epidemiological time series by a threshold autoregressive model. The 
Statistician 44(3): 353-364. 

 


