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Abstract — This work investigates the efficiencies of five 
estimators of panel data models under unbalanced data 
structure triggered by the presence of missing values. 
The methods considered are the Between, Random 
(Swamy-Arora), First Difference, Pooling, and Within 
estimators. In the Monte-Carlo experiments, 
unbalanced sample panel data were generated with 5% 
missingness at random using a published balanced panel 
dataset with five sample units (n) each measured at an 
equal time interval of five (t). This was done to inject 
missingness in time (t) or in sample unit (n) or both, 
thereby creating an unbalanced data structure. The 
performances of these five estimators were evaluated 
using the Mean Square Error (MSE) and the Mean 
Absolute Error (MAE). The results showed that Between 
estimator, with the least values of MSE and MAE, 
proved to be the best estimator for Panel data model 
under an unbalanced data structure. In terms of the 
order of performances, further results showed that the 
Within estimator was the second-best followed by the 
Random estimator with the Pooling estimator at the 
First Difference having the least performance for 
estimating unbalanced panel data model, especially 
under the small sample size situations. This study 
recommends that the Between estimator should be 
adopted for fitting the panel data models when evidence 
of missingness is apparent in the data, especially when 
the number of sample units is very small.  
 
Keywords - Panel data, missingness, unbalanced panel data, 
mean square error, mean absolute error.  

i. Introduction  

Panel data refers to data sets consisting of multiple 
(repeated) observations on each sampling unit. A panel data 
set is one where observations are obtained on the same set 
of entities at several periods. This could be generated by 
pooling time-series observations across a variety of cross-

sectional units including countries, states, regions, firms, or 
randomly sampled individuals or households. Panel data set 
covers a much larger sample and is representative of all 
demographic groups. Baltagi (2014) 

Missing data constitute a major problem in the 
behavioral sciences, particularly when data collection is 
costly or involves destructions. Rubin et. al (2007).  The 
general approach that is often adopted by researchers is to 
delete cases with missing observation(s). This approach can 
result in biased estimates and reduce power of the statistical 
tests used to analyze the data. Trying to avoid the deletion 
of a case because of a missing data point can be conducted, 
but implementing a naïve missing data method can result in 
distorted estimates and incorrect conclusions.  

Many literatures established various estimators for 
analyzing panel data under unbalanced panel data for error 
component models. Error component model is synonymous 
or a byword for random effect. These considered 
unbalanced one-way model, unbalanced two-way model 
and unbalanced nested model. Estimating panel data with 
missing values is a growing interest of many researchers 
particularly in Medicine and Economics. Few of these 
literatures are, Mayer (2010); Graham (2009) Young and 
Johnson (2015); Kang (2015); Cottrell (2017) and Lee et. al 
(2021).  

Also, literature has shown that ‘missingness’ in panel 
data set leads to unbalanced panel data set.  Bruno (2013). 
This literature also, reveals that a theoretical analysis of the 
algorithm has been 
proposed in literature to estimate Error Component Models 
(ECM) for unbalanced panel data.  

Estimating missingness could be under different types 
of missingness, that is Missing at Random (MAR), Not 
Missing at Random (NMAR) and Missing completely At 
Random (MCAR). An interesting point is that a data could 
be removed due to missing values in panel data. This 
attrition leads to bias estimates of panel data parameters as 
it reduced the number of observations in the studies. Some 
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literature that reviewed the mechanism of types of 
missingness are: Hedeker and Gibbons (2006); Nijman and 
Verbeek (1992); Schafer (1997);  Rubin et al (1981). 

This work is to estimate panel data set under 
unbalanced data set using existing panel data models in R- 
package. Two error criteria, Mean Square Error and Mean 
Absolute Error are employed to investigate the most 
efficient estimator among the five estimators considered.. 

II. METHODOLOGY 

This work focus on estimating panel data set under 
unbalanced data set. Previous studies considered estimating 
unbalanced panel models under error component models 
(EMC). The EMC is a byword for “random effect” , 
Croissant and Millo (2018). In general, parameter 
estimation in the regression analysis with cross-section data 
is done by estimating the least squares method, the Ordinary 
Least Square (OLS), Zulfikar et al. (2019). The method of 
estimating the regression model in panel data is done using 
three approaches, these are the common effect model or the 
Pooled Least Square which uses OLS, the Fixed Effect 
Model, and the Random Effect Model.  

The methods of estimating the coefficients and EMC 
(random effect model) of unbalanced data set among others 
are ANOVA which is best quadratic unbiased estimator 
(BQU), quadratic unbiased estimator (QUE), ANOVA-type 
feasible GLS, MLE, ML, MINQUE and MIVQUE. Mayer 
(2010). This work is to examine the coefficients of the 
parameters of five panel data models. The Between 
Estimator, the Within Estimator, the Random (Swamy-
Arora’s) Estimator, the Pooling Estimator and First 
Difference Estimator; and to investigate the performances of 
these five estimators using the Mean Square Error and Mean 
Absolute Error criteria.  

In general, the panel data model is represented as 
follows 
 
𝑦  =  𝛽 + 𝛽 𝑥 + 𝜀      (1) 
 
=   𝛽 + 𝛽 𝑥 + 𝜌 + 𝜇 +  𝛾    (2) 
 
where 𝑖 and 𝑡 are the individual and time indexes, y the 
response, x a vector of covariates, 𝛽  the overall intercept 
and𝛽  the vector of parameters of interest that we are 
willing to estimate.  
Equation (2) is the unbalanced panel data model where the 
error term 𝜀  is decomposed into three elements (in the two-
way case) 
 
𝜌  is the individual effect, 
𝜇  is the time effect, 
𝛾   is the idiosyncratic error. 

 
2.1 Five Panel Data Estimators under studies 
The theoretical review of the five estimators considered in 
this study is presented in this section.  
 
2.1.1 Pooling Estimator: This is an OLS estimation 
equivalent to lm and “walhus”.  Wallace and Hussain 
(1969); Baltagi (2010) 
 
𝑦  =  𝛽 + 𝛽 𝑥 + 𝜀 ; 𝑡 = 1,2, … 𝑇 ; 𝑖 = 1, 2, … , 𝑁   (3) 
 
where: 
𝑦   is the observation on the dependent variable for the ith 
individual at the tth time period, 
𝑥  is ith observation on a vector of k nonstochastic 
regressors 
𝛽 is a kx1 vector of regression coefficients  
𝛽  is the intercept. 
The pooled estimator is given as: 
𝜷   = (𝑿 𝑿) 𝟏𝑿 𝒚       (4) 
where,  
y is an 𝑛𝑇 × 1 column vector of a dependent variable,  
X is an 𝑛𝑇 × 𝑘 square matrix of regressors,  
β is a (k+1) × 1column vector of regression coefficients,  
w is an 𝑛𝑇 × 1 column vector of the combined error terms 
(i. e.  𝜀 +μit). Garba et al. (2013) 

2.1.2 Between Estimator: This estimator performs the 
estimation on the individual or time mean. It explicitly 
converts all the observations into individual-specific 
averages and performs OLS on the transformed data.  
Averaging model (3) over t gives:   

𝑌 . = α + 𝛽  𝑋 .  + 𝛽  𝑋 . + wit        (5) 

Generally,  

 𝑌 . =  𝑇 ∑ 𝑌 ,  𝑋 . =  𝑇 ∑ 𝑋 , and 𝑤 .  =  𝑇 ∑ 𝑤it for 
i = 1,2…n; t = 1, 2, …, T and j = 1,2 

The Between estimator ignores all of the individual-specific 
variation in y and X that is considered by the Within 
estimator, replacing each observation for an individual with 
their mean behavior. Baum (2013).  
2.1.3 Within Estimator: This is equivalent to 
"amemiya".  T. Amemiya (1971); Matyas and Sevestre 
(1992). This regresses on the deviations from the individual 
or/and time mean. 
 
𝑦 =  𝑋∗ 𝛽∗ +  𝑍 +  𝜀                                (6) 
 
where,  
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𝜀 =    𝑎 +  𝑢      (7) 
 
The 𝑋∗  matrix does not contain a unit’s vector. The 
heterogeneity or individual effect is captured by Z, which 
contains a constant term and possibly several other 
individual-specific factors. Likewise, 𝛽∗contains 𝛽  , … , 𝛽 , 
constrained to be equal over i and t. If Z contains only a 
unit’s vector, then pooled OLS is a consistent and efficient 
estimator of [𝛽∗ 𝛼].  
2.1.4 First Difference Estimator: This model is 
equivalent to “fd”. This model regresses on the first 
differences of the mean of an individual unit 𝑖 over time 𝑡 . 
(Arellano, 2003; Baltagi, 2005) 
The First Difference model is given as:  
 
∆Yit =  𝛽  ∆𝑋   + 𝛽  ∆𝑋 β + ∆wit    (8) 
 
where,   
 
∆Y =  Y  −  𝑌 , ; ∆𝑋  = 𝑋 −  𝑋 ,  ; ∆𝑋 = 
 
 𝑋  -  𝑋 ,   
 
and  
 
∆w =  𝑤  −  𝑤 ,  for i = 1,2…n and t = 1,2… T. 
 
2.1.5 Random Estimator: This is equivalent to “swar” 
models.  Swamy and Arora (1972); Cottrell (2017). 
" According to Hauser, the estimator follows the underlying 
model expression:  
 
∝  ~ 𝑖𝑖𝑑 𝑁(0, 𝛿∝) 
 
𝑦 =  𝛽 + 𝑋 𝛽 + ∝  +  𝑢  , 𝑢  ~ 𝑖𝑖𝑑 (0, 𝛿 )              (9) 
 
The ∝ ’s are random variables with the same variance. The 
value 𝛼 is specific for individual i. The ∝’s of different 
individuals are independent, have a mean of zero, and their 
distribution is assumed to be closed o normal. The overall 
mean is captured in 𝛽 . ∝   is time-invariant and 
homoscedastic across individuals. There is only one 
additional parameter  𝛿∝. Only ∝  contributes to Corr 
(_𝜖 ,  , 𝜖 , ) .  ∝   determines both 𝜖 ,  𝑎𝑛𝑑  𝜖 ,  
The switch between OLS and FE is anchored on the 
covariance between the alpha and the independent 
variable(s). If the covariance is zero (i.e., very small) it 
means that there is no correlation and OLS is preferred, 
however, if the covariance is not zero or greater than zero or 
large there is correlation and FE should be preferred. Brugger 
(2021) 

 
𝑦 =  𝛽 + 𝑋 𝛽 +  𝛼 +  𝑢  , 𝑢  ~ 𝑖𝑖𝑑 (0, 𝛿 ) (10) 
 
where 𝑡 =  𝜆, … , 𝑇 and 𝑖 =  1, … , 𝑁 
 
𝐶𝑜𝑣 (𝛼 , 𝑋 ) ≠ 0  ∼ 𝐹𝐸 − 𝑚𝑜𝑑𝑒𝑙   (11) 
 
𝐶𝑜𝑣 (𝛼 , 𝑋 )= 0  ∼ 𝐹𝐸 − 𝑂𝐿𝑆    (12) 
 
Also, if  

 𝜆 = 1 −  
.  

 ,    (13) 

 
  𝜆 = 1  ∼ 𝐹𝐸 𝑚𝑜𝑑𝑒𝑙     (14) 
 
 𝜆 = 0  ∼ 𝑂𝐿𝑆 model.    (15) 
 
2.2. Simulation  
This project work adapts the scheme adopted by Reed and 
Ye (2011) with some little modifications. The R-package 
was used for the simulation and analysis.  
The following settings were used in the simulation task: For 
a total of 𝑛 = 5 subjects were studied over T = 5 times. Thus, 
a total of N = 25 (𝑛 × 𝑇) observations were generated for 
the data. The panel data model considered is of the form: 
 
 𝑦 =  𝛽 +  𝛽 𝑋 +  𝑒  ,                              (16) 
 
where:  
 
𝑡 =  1, … , 𝑇 ; 𝑖 =  1, … , 𝑛   and   𝑘 =  1, … , 5.  
 
The 𝑋  was simulated from Gaussian population with the 
following: 𝑋 ~𝑖𝑖𝑑 𝑁(20, 1). The error term 𝑒 , was 
simulated from 𝑒  ~ 𝑖𝑖𝑑 𝑁(0, 1). The parameters 𝛽  and 𝛽  
in model (16) were set at: 𝛽 = 20 and 𝛽 = 3. 
The vectors 𝑦  and 𝑋  values are then used to obtain 
estimates of 𝛽  for each of the estimators under study.  
Unbalance time intervals were infused into the data by 
randomly removing 5% of the total sample from the data. 
Population parameter values for the DGPs in the Monte 
Carlo experiments. 
 
2.3 Measurement Criteria 
2.3.1 Mean Square Error: The MSE of the residuals of 
each Model Estimator considered in this study was 
calculated.  The behavior of each estimate was observed for 
both Balanced and Unbalanced panel data to know how they 
weigh on the error. 
The MSE equation is given as: 
 

𝑀𝑆𝐸 =  
∑ (  )

     (17) 
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where N is the number of samples we are testing against. Seif 
(2019).  
 
If 𝑀𝑆𝐸(𝜃 )  <  𝑀𝑆𝐸 (𝜃 )     (18) 
 
then 𝜃  𝑖s said to be more efficient than  𝜃 .  Veroniki and 
Salanti (2013) 
2.3.2. Mean Absolute Error: To calculate the MAE, you 
take the difference between your model’s predictions and 

the ground truth, apply the absolute value to that difference, 
and then average it out across the whole dataset. The 
behavior of the MAE was also observed. The MAE, like the 
MSE, will never be negative since in this case, we are always 
taking the absolute value of the errors.  
The MAE equation is given as: 
 

𝑀𝐴𝐸 =  
∑ |  |

     (19) 

 

III. RESULT AND DISCUSSION 

 
Table 1: Results for Balance Panel Data Estimators 
 

 POOLING 
 

WITHIN  RANDOM 
(Swamy-Arora's) 

FD BETWEEN 

BALANCE PANEL: n = 5, T = 5, N = 25 
Coefficients Intercept 17.5506       17.2781   -0.2253   20.2117    

X 3.5340 3.15704     3.1433 2.9369 2.9959    
Std. Error Intercept 4.9661     4.8353 0.2791 16.8946 

X 0.2494   0.25912   0.2426 0.1870 0.8491 
X 12.5500 12.184 12.9585 15.7043 3.5284   

Pr(>|t|) 
 
 

  

Intercept 0.00177**  0.0003525 *** 0.4301 0.3175 
X 8.99e-12 * 2.003e-10 *** < 2.2e-16 *** 5.968e-12 

*** 
0.0387 * 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘’ 1 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 2: Results for Unbalanced Panel Data Estimators  
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 POOLING 
 

WITHIN  RANDOM 
(Swamy-Arora's) 

FD BETWEEN 

UNBALANCED PANEL: n = 5, T = 3-5, N = 20 
Coefficients 

 
Intercept 17.8785      

 
 19.4729                 -0.7065                16.1866     

 
X 3.1258      3.0048    3.0440     2.9167   3.1910      

Std. Error Intercept 5.1787     4.4755  0.2750 25.8119   

X 0.2598   0.2333  0.2241  0.1807 1.2971   

t value Intercept 3.4520    4.3510 -0.1943    0.6271    

X 12.0310 12.8770 13.5860 16.1411 2.4600    

Pr(>|t|) Intercept 0.00284 **  1.355e-05 *** 0.4923     0.6434 
X 4.84e-10 *** 3.761e-09 *** < 2.2e-16 *** 5.569e-10 *** 0.2458 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘’ 1 
 
The result of the five estimators considered for 

balance pane models under the unbalanced panel models are 
discussed here. The discussion of the result from the Monte-
Carlo study; the results of the parameters of the five 
regression models analyzed, the performances of the 
estimators assessed via the mean square error and the mean 
absolute error. The estimates were ranked from 1st, 2nd, 3rd, 
4th and 5th with 1st ranked attributed to the most efficient 
estimator that has the lowest value of the mean square error 
and the absolute mean square error. 2nd rank is assigned to 
the second to performed best and so on.  
Table 1 and Table 2 show the result of the regression 
analysis for Pooling, Within, Random, First Difference, and 
Between Estimators for both Balance panel and Unbalanced 
panel data. 

For the balance data set outputs, Random (Swamy- 
Arora’s) estimate rank first in performance, followed by 
Within Estimator, followed by First Difference Estimator, 
followed by Pooling Estimator, and lastly, the Between 
Estimator rank last in terms of the P-value and their 
significance in respect to the independent variables.  
 

Similarly, the estimators employed for a 5% 
missingness attributable for unbalanced data and, the 
outcomes follow the same trend as when it was for the 
balance panel data. Besides the ranking, it is interesting to 
note that the p-value estimate for the dependent variable for 
Swamy- Arora’s model in both panel data set and 
unbalanced panel data are the same. Also, the Between 
model coefficient estimate is not significant.  

Similar to the MSE outcomes, Table 4 shows the 
estimates of the Mean Absolute Error (MAE) for the 
Estimators considered for balance panel models and their 
corresponding estimate for unbalanced panel data models. 
The results also follow the same pattern in ranking as MSE.  
Between Estimator rank first while Within Estimator 
followed, Random (Swamy-Arora’s) Estimator was next, 
followed by Pooling Estimator and lastly First Difference 
Estimator rank last. Here there was no negative estimate 
because MAE is taking the absolute values of the residual of 
the Estimators. Figure 1 and Figure 2 also reflect the ranking 
of the MAE results similar to the presentation in Table 4. 
 

 
Table 3: Mean Square Error (MSE) 

 

 POOLING 
(OLS) 

WITHIN 
 

RANDOM 
(Swamy-Arora's) 

FD BETWEEN 
 

BALANCE PANEL: n = 5, T = 5, N = 25  

MSE 1.1287 0.8354 0.9687 1.3986 0.2904 

UNBALANCED PANEL: n = 5, T = 3-5, N = 20 

MSE 0.8924 0.4754 0.5919 0.9803 0.2465 
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Figure 1: Plot of Mean Absolute Error of Balance Data 

 
 

 
 

Figure 3:Plot of  Mean Absolute Error of Unbalanced Data 

Table 4: Mean Absolute Error (MAE) 

MAE POOLING 
(OLS) 

WITHIN 
 

RANDOM 
(Swamy-Arora's) 

FD BETWEEN 
 

BALANCE PANEL: n = 5, T = 5, N = 25  

MAE 0.8023 0.7148 0.7541 0.9706 0.4724 

UNBALANCED PANEL: n = 5, T = 3-5, N = 20 

MAE 0.7619 0.5891 0.6165 0.8140 0.4677 
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The MSE is always positive (and not zero) because 
of  randomness.  The MSE is the second moment (about the 
origin) of the error and thus incorporates both 
the variance of the estimator (how widely spread the 
estimates are)  and its bias (how far off the average 
estimated value is from the true value),  For an unbiased 
estimator, the MSE is the variance of the estimator. Like the 
variance, MSE has the same units of measurement as the 
square of the quantity being estimated. An analogy 
to standard deviation. If MSE is greater than zero which 
means that is 𝜆 ≠ 0  therefore, the Random effect is FE, 
however, this is less efficient than Within and Between. 
Brugger (2021). This assumption  makes Random estimator 
less efficient in this study. 

Pooling (OLS) Estimator ranked 4th. OLS ignores time 
and individual characteristics and focuses only on 
dependencies between the individual. It is characterized by 
no correlation between the unobserved, independent 
variable(s) and the independent variables (i.e., exogeneity) 
for the same individual. This assumption on the error terms 
is very strong or unrealistic. This accounts for its high 
estimate compared to other Estimators as seen in Table 3 
and Table 4. 

First difference Estimator performs poorly among the 
five Estimators considered as it ranked 5th.   Correlation 
between 𝑋  and 𝑤 . .  equation (8) an assumption on 
exogeneity makes it less demanding for FD than Within 
estimator and other Estimators.  It is also less efficient than 
other Estimators because 𝑊  is serially correlated and even 
if 𝑊 ′s is uncorrelated. Therefore, FD does not violate this 
assumption in this project.  

IV. CONCLUSION 

Findings in this work show the ranking in terms of p-value 
and significance of the regression coefficients in respect to 
the independent variables for the five estimators considered 
for the balance panel data set; Random (Swarmy-Arora’s) 
estimator rank 1st in performance, Within Estimator ranked 
2nd, First Difference Estimator ranked 3rd, Pooling Estimator 
ranked 4th and lastly, the Between Estimator ranked 5th. 

Similarly, the estimators employed for a 5% 
missingness attributable for unbalanced data and, the 
outcomes follow the same trend as when it was for the 
balance panel data.  

Besides the ranking, it is interesting to note that the p-
value estimate for the dependent variable for Swamy- 
Arora’s model in both panel data set and unbalanced panel 
data are the same. Also, the Between model coefficient 
estimate is not significant.  

Following the Monte-Carlo studies to investigate the 
performances of the five different estimators of balance 
panel data models under unbalanced panel data models. The 
results for the criteria for the performances computed; mean 

square error (MSE) and mean absolute error (MAE) show 
that for balance panel models and a respective estimate for 
unbalanced panel models ranking have the same pattern. 
That is Between Estimator ranked 1st while Within 
Estimator ranked 2nd, Random (Swamy-Arora’s) Estimator 
ranked 3rd, Pooling Estimator ranked 4th and lastly First 
Difference Estimator ranked 5th.  

In general, the result shows that the Between estimator 
performed better than the other four estimators considered 
for panel data set under the unbalanced data set for small 
sample size(n). As signal in the study, it is recommended 
that the Between estimator should be adopted for fitting the 
panel data models when evidence of missingness is 
observable in the data, especially when the number of 
sample units is very small 
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