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Abstract — The multivariate kernel density estimator unlike 
the univariate case demands more than one smoothing 
parameter for its axes depending on the smoothing 
parameterizations employed. The diagonal and the full 
parameterizations are the common forms of 
parameterizations of the multivariate kernel density 
estimator. This paper investigates the performance of these 
smoothing parameterizations in multivariate density 
estimation with emphasis on the bivariate kernel density 
estimator in practical application using the asymptotic mean 
integrated squared error as the error criterion function.  The 
result of the investigation reveals that the full smoothing 
parameterization did better than the diagonal 
parameterization in terms of performance with real data 
examples.  

Keywords - Smoothing matrix, Kernel Density Estimator, 
Integrated Variance, Integrated Squared Bias, Asymptotic 
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I. INTRODUCTION  

Nonparametric density estimation is of wide applications 
with the kernel estimator as one of its popular techniques 
in data smoothing. The wide applicability of this estimator 
is due to the easy of its implementation (Schauer et al, 
2013). Kernel estimation is a data smoothing strategy 
where inferences and conclusions could be made about the 
set of random variables under consideration (Duong, 
2004). As a nonparametric method for estimating 
probability density, kernel estimation is a very useful tool 
for analysis and visualization of the distribution of a data 
set (Silverman, 1986; Simonoff, 1996). 

The general multivariate form of the kernel density 
estimator introduced by Deheuvels (1977) is of the form 

��(x) =
1

�|�|�/�
� 	� �

x − ��
��/�

�

�

���

,																																		(1) 

 

where	� is the sample size, � = (��, ��,… , ��)
�, �� =

(���, ���, … , ���)
�, � = �, �, … , � and	�	is the smoothing 

matrix that is symmetric and positive definite. The data set 
��		are usually observations or measurements obtained 
from real life. The kernel function	�(�) is a multivariate 
function which is a symmetric probability function (Scott, 
1992; Wand and Jones, 1995) that satisfies the conditions 

��(x) �x = 1	, � x�(x) �x = 0		and	 

�xx��(x) �x = ��(�)��.																																							(2) 

The conditions in Equation (2) are satisfied by all kernels 
with the kernel function taken to be a �-variate probability 
density function. The first condition in Equation (2) 
implies that the sum of the marginal kernels are equal to 
one, the second condition simply states that the means of 
the marginal kernels are all zero, and the third condition 
means that the marginal kernels are all pairwise 
uncorrelated and with unit variance in each dimension 
(Scott, 1992; Wand and Jones, 1995).  

The kernel estimator in Equation (1) is a useful tool 
for data exploratory analysis and data visualization 

especially for bivariate data when ��(�) can be visualized 
using the familiar perspectives or contour plots (Silverman, 
1986; Scott, 1992; Simonoff, 1996) and also has 
applications in discriminant analysis and goodness-of-fit 
testing (Duong and Hazelton, 2003; Duong, 2004). The 

choice of �	is very important to the performance of ��(�) 
either in the diagonal matrix form or in the full matrix 
form. 

The purpose of this paper is to compare the 

performance of the estimator ��(�) using the diagonal 
smoothing matrix and the full smoothing matrix in the 
bivariate case with the asymptotic mean integration square 
error (AMISE) as the criterion function. The rest of the 
paper is organized as follows. In section 2, we state the 
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form of the bivariate kernel estimator while section 3 state 
the asymptotic mean integrated squared error of the 
multivariate kernel density estimator with brief discussion 
of forms of parameterizations. Section 4 contains a 
comparative study of the two forms considered using real 
data examples and section 5 concludes the paper. 

II. THE BIVARIATE KERNEL DENSITY 

ESTIMATOR  

A very natural and important use of the bivariate kernel 
density estimates is the investigation of the properties of a 
set of data such as skewness and modality largely because 
they can be viewed using the surface plots or contour plots 
(Silverman, 1986; Duong and Hazelton, 2003). The 
bivariate kernel density estimator is a special case of the 
multivariate kernel density estimator that deals with 
random variables taking values in		��.  

The bivariate kernel density estimator is use for the 
production of two-dimensional diagram in the case of 
contour plots and three-dimensional diagram in the case of 
surface plots of the distribution of two variables. In the 
bivariate kernel density estimator, �	, � are taken to be the 
random variables taking values in �� and they have a joint 
density function �(�	, �), (�	, �) ∈ �� with 	��	, ��, � =
�, �, … , �	 being the set of observations of size � drawn 
from the distribution. The kernel density estimate of 
�(�	, �)	 base on this sample is of the form   

��(x	, y) =
1

�ℎ�ℎ�
��

�

���

�
x − X�
ℎ�

,
y − Y�
ℎ�

�,																	(3) 

where 	ℎ� > 0  and ℎ� > 0 are the smoothing parameters 

in the X and Y axes and �(x	, y)	is a bivariate kernel 
function which is usually the product of two univariate 
kernels. This implies that the bivariate kernel estimator can 
be written as (Zhang et al., 2011) 

��(x	, y) =
1

�
�	

1

	ℎ�	
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�

���
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x − X�
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�
1
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� �

y − Y�
ℎ�

�.						(4) 

The importance of the bivariate kernel density estimator 
cannot be overemphasized because it occupied a unique 
position of bridging the univariate kernel estimator and 
other higher dimensional kernel estimators. Again, the 
bivariate kernel density estimates are also very simple to 
understand and interpret, either as surface plots or contour 
plots (Silverman, 1986 Duong and Hazelton, 2003). 
 

III. Asymptotic Mean Integrated 

Square Error Approximations 

The quality of the estimate ��(�) in Equation (1) is 
measured by the asymptotic mean integrated squared error 
(AMISE) defined as 

AMISE���(x	;	�)� = E� ���(x	;	�) − �(z)�
�

�x

= 	� �E	��(x	;	�) − �(x)�
�

�x

+ �Var ���(x	;	�)� �x					 

=		�Bias� ���(x	;	�)� �x +�Var ���(x	;	�)� �x	. 							(5) 

This gives the asymptotic mean integrated squared error 
(AMISE) as the sum of the asymptotic integrated squared 
bias and the asymptotic integrated variance (Silverman, 
1986; Wand and Jones, 1995). The asymptotic integrated 
squared bias and the asymptotic integrated variance can be 
obtained by using the Multivariate Taylor’s series 

expansion of ��(�).	Therefore the asymptotic integrated 
squared bias is of the form 

��������(x	;	�)�x�
�

≈
1

4
��(�)

� � ��� �Hℋ�(x)��x. (6) 

Also the asymptotic integrated variance is given by 

������(x	;	�)�x ≈ ���|H|�� �⁄ �(�).																										(7) 

The estimate of the asymptotic mean integrated squared 
error (AMISE) is obtain by the combination of the terms in 
Equation (6) and Equation (7) given as 

�MISE���(x	;	�)� ≈ ���|H|�� �⁄ �(�)

+
1

4
��(�)

� � ��� �Hℋ�(x)��x	,				(8) 

where |∙| is the determinant of the smoothing matrix, 
�(�)	is the roughness of the kernel, ��(�)

�	 is the 
variance of the kernel,	ℋ�	 is the Hessian matrix of the 

density �(x) and ��  indicates the trace of a matrix (Scott, 
1992; Wand and Jones, 1995; Sain, 2002). There is no 
explicit expression for the AMISE-optimal smoothing 
matrix in the form of Equation (8) (Scott, 1992; Wand and 
Jones, 1995; Chacón, 2009).  

In choosing the smoothing matrix	�, the complexity of 
the underlying density function and the number of 
parameters to be estimated must be considered (Sain, 
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2002). Generally, the commonest parameterizations of the 
smoothing matrix in the multivariate case are the diagonal 
parameterization and the full parameterization provided the 
matrix � is symmetric and positive definite. Assuming �	is 
a multivariate standard �-variate normal kernel, then  

�(x) = (2π)��/�exp �−
x�x

2
�.														(9) 

In the case of the multivariate product kernel estimator, 
Equation (8) can now be written as  

����� =
�(�)�

�ℎ�ℎ�, … , ℎ�	

+
1

4
ℎ�
���(K)

�
	 � ����	ℋ�(x)��x	. 	(10) 

The smoothing parameter that minimizes the AMISE of 
Equation (10) is given by  

������ = �
��(�)�

��(K)
�
	 ∫ ��

��	ℋ�	(x)��x
�

�
�

���
�

× ���
�

���
�(11) 

This choice of ������	 will yield an	����� = � ����
�

���
�� 

and the smoothing parameter values are of order		��� (���)⁄  
where � is the dimension of the kernel (Sain, 2002).  

In the case of the bivariate kernel estimator given in 
Equations (3) and (4) above, the bivariate standard normal 
function is of the form 

�(x	, y) =
1

2π
exp �−

x� + y�

2
�.																														(12) 

The smoothing parameterizations of the bivariate case that 
is consider are of the forms 

� = �
ℎ�
� 0

0 ℎ�
�� 					and			� = �

ℎ�
� ℎ��

ℎ�� ℎ�
� �.												(13) 

The performance of these forms of parameterizations will 
be evaluated using the AMISE as the error criterion 
function. 
 

IV. Results 

In this section, we will compare the performance of the 
diagonal smoothing matrix with the full smoothing matrix 
using some real data examples. We will represent the 
smoothing matrix that minimizes the asymptotic mean 
integrated squared error (AMISE) in the case of the 
diagonal smoothing matrix by ��������  and that of the 
full smoothing matrix by		�������� . Figures 4.1; 4.2; 4.3; 
and 4.4 shows the kernel estimates of the two forms of 
parameterizations considered. 

The first data set examined involves the locations of 
centers of craters of 120 volcanoes in the Bunyaruguru 
volcanic field in Western Uganda (Bailey and Gatrell, 

1995).  A map of the distribution shows a broad regional 
trend in a North-Easterly direction, representing elongation 
along a major fault. These sets of data were bimodal, 
indicating the major centres where the volcanic activities 
occurred. The data were standardized in order to obtain 
equal variances in each dimension because in most 
multivariate statistical analysis, the data should be 
standardized to ensure that the differences among the 
ranges of variables disappear (Wand and Jones, 1993; 
Simonoff, 1996 and Cula and Toktamis, 2000; Sain, 2002). 
The smoothing matrices for the two forms are   

�������� = �
0.480183 0.000000
0.000000 0.480533

�  and  �������� =

�
0.538986995 −0.00004873
−0.00004873 0.539380057

� 

 
Figure 4.1 and Figure 4.2 below shows the kernel estimates 
that is the familiar perspectives (surface plots) and the 
contour plots of the two forms of smoothing 
parameterizations using the bivariate standard normal 
product kernel 
 

 
Table 4.1 shows the asymptotic integrated variance (AIV), 
the asymptotic integrated squared bias (AISB) and the 
asymptotic mean integrated squared error (AMISE) for the 
first data set 
 
  Table 4.1: Variance, Bias2 and AMISE for First Data Set. 

Methods. 				���			 ���� ����� 
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HD-AMISE 0.002873 0.001436 0.004310 
HF-AMISE 0.002281 0.000184 0.002465 
 

The analysis in Table 4.1 clearly shows that the full 
smoothing matrix did better than the diagonal smoothing 
matrix in terms of performance. As generally known, one 
method is better than the other one when it gives a smaller 
value of the AMISE (Jarnicka, 2009). However, both 
parameterizations retained the bimodality of the observed 
data. Also both parameterizations exemplify the usefulness 
of the bivariate kernel density estimates for highlighting 
structures in a data set. 

The second data set examined is the blood fat 
concentration data also known as the lipid data of Scott et 
al. (1978). These data consist of measurements of 
cholesterol and triglycerides for 320 men diagnosed with 
coronary artery disease and the original paper showed that 
the data were bimodal; indicating an increased risk for 
heart disease is associated with increased cholesterol level 
(Sain, 2002). The data were standardized to obtain equal 
variances in each dimension. The smoothing matrices for 
this data set are    

 �������� = �
0.403262 0.000000
0.000000 0.410678

�   and  �������� =

�
0.4526467 0.0021664
0.0021664 0.4609705

� 

Figure 4.3 and Figure 4.4 shows the kernel estimates, 
which are the surface plots and the contour plots of the two 
forms of smoothing parameterizations considered, using 
the bivariate standard normal product kernel.   
 

 
 

Table 4.2 shows the asymptotic integrated variance (AIV), 
the asymptotic integrated squared bias (AISB) and the 
asymptotic mean integrated squared error (AMISE) of both 
forms of parameterizations for the second data set. 
 
Table 4.2: Variance, Bias2 and AMISE for Second Data 
Set. 
 
Methods. 				���			 ���� ����� 
HD-AMISE 0.001502 0.000751 0.002253 
HF-AMISE 0.001192 0.000241 0.001432 
 
The diagonal smoothing matrix produced an estimate that 
is considerably oversmoothed and it is difficult to identify 
the bimodality discussed in Scott et al. (1978) as seen in 
Figure 4.3. The full smoothing matrix produced an 
estimate with the bimodality being clearly present as 
shown in Figure 4.4. More clearly noticed from Table 4.2 
is that the full smoothing matrix did better in terms of 
performance than the diagonal smoothing matrix. Another 
very important issue in kernel density estimation is its 
usefulness in highlighting structures in the data set and this 
was achieved with the estimate of the full smoothing 
matrix unlike the estimate of the diagonal smoothing 
matrix. 
 

V. Conclusion  

This paper examined the performance of the smoothing 
matrix in multivariate kernel density estimation with 
emphasis on the bivariate kernel estimator using the 
diagonal smoothing parameterization and the full 
smoothing parameterization. The kernel estimates and the 
AMISE values show that the full smoothing matrices 
perform better than the diagonal smoothing matrices with 
respect to the bivariate kernel density estimator. The 
results show that full smoothing matrices can give 
markedly better performance when compare to the 
diagonal smoothing matrices. 
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