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Abstract- We consider the use of t -distribution which is a 

heavy tailed distribution in the estimation of parameters of 
linear profile when the data are not normally distributed. The 
estimates of parameters of the linear profile obtained from 
this approach are compared with estimates obtained from two 
other approaches; Huber function (which has heavy tail than 
normal distribution) which is a robust approach and least 
square method. The results obtained indicate that the new 
approach produced better estimates at three (3) degree of 
freedom and the estimates with the least square approach at 
ten thousand (10000) degree of freedom.   
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i. Introduction  

In Statistical Process Control (SPC), some quality and 
process characteristics may be better explained as a 
function of some independent or explanatory variables. 
Such a situation in SPC is usually referred to as “profile”. 
Monitoring of profile entails monitoring of the parameters 
of the profile over time to know if there is change in the 
profile as a result of change in the parameters of the 
profile. This involves two phases; phase I which is a 
retrospective phase in which the parameters of the profile 
are estimated from historical data sets which are used to 
construct a control chart to determine whether the profiles 
are in- statistical control, and phase II which involves the 
future profile monitoring based on the in-statistical control 
chart established in phase I. 

Consider ( , )k jk jk kY f x     where kY , is the quality 

or process characteristics (response variable) of the 
thk

profile 1, 2,...,k m , f defines the functional form 

between kY and jkx . f  may be linear or nonlinear. jkx  

is the 
thj explanatory variable of the 

thk profile

1, 2,...,j l , jk  is the effect of the 
thj explanatory 

variable on the 
thk profile,  k is the error term which is 

usually assumed to be independently identically distributed 

( . . )i i d normal random variable with mean zero and 

variance 
2 . The error term accounts for other factors 

which cannot be explained by the explanatory variable but 
affect the response variable.  
A number of researchers [1, 2, 3, 4, 5] have considered 
linear profile monitoring assuming that the functional form 

f of the response variable kY with respect to explanatory 

variable is linear and the error term is independent 
identically distributed normal. They used least square 
method of estimation “classical approach” to estimate the 
parameters of the profile for Phase I. The least square 
method is known for its computational ease, its estimated 
parameters are optimal and it is the maximum likelihood 
estimators for the parameters of the linear function when 
the error terms are normally distributed [6]. The 
assumptions of independence and normality of the error 
terms however, do not always hold [7, 8, 9 ]. [9] 
considered the effect of non-normality on phase I and 
concluded that the false alarm rate of phase I increases in 
the presence of non-normality of the error terms. [10] 
studied the effect of non-normality and autocorrelation on 
linear profile and noted that the violation of normality and 
independent identical distribution assumption affect the 
performance of the control chart and may lead to 
misjudgement of the process status. 
Robust methods have been developed to reduce the effect 
of outliers on estimators and to produce estimates which 
are optimal around the neighbourhood of the assumed 
model [11] and [12].  
In profile monitoring, [13] considered nonparametric 

1L  regression methods, [14] considered the use of 
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weighted functions, Huber and bisquare. The Huber M 
estimate is known to have normal distribution between the 

interval [ , ]k k and exponential distribution outside the 

interval which provides the least favourable distribution 

[12]; where k is the tuning parameter. According to [11], 
the Huber least favourable distribution appears to have 
longer tail than the normal distribution and observation that 
is farther away from other observations that the Huber’s 
least favourable distribution cannot accommodated may be 
discarded. And this may lead to having estimates which do 
not reflect all the possible information contained in the 
observations. In this paper, we will consider a distribution 
which has longer tail than the Huber’s least favourable 
distribution with a view to accommodating far outlying 
observation(s) and at the same time make robust the effect 
of the outliers on the estimated parameters of the profile. 
Section 2 considers the formulation of the model. Section 3 
deals with the estimation of parameters, sections 4, 5, and 
6 deal with the construction of Phase I control chart, 
Implementation and conclusion respectively.  

   
 
II. MATERIALS AND METHODS 

Let ( , )ki kij kj kiy f x e   defines the 
thk  functional 

relationship between the response and the explanatory 

variables, where 1, 2,...,k m  is the number of profiles, 

1, 2,...,i n  is the number of observations in the 
thk

profile, and 1, 2,...,j l is the number of explanatory 

variables in the 
thk profile. It is assumed that the form of 

functional relationship f is linear and kie ’s is iid random 

variable with mean zero and variance
2 from t  

distribution. We have a linear model with unknown 

parameters 
2( , ) 'j   given by 

0

l

ki kj kij ki
j

y x e


   ; where 0 1kix   

This can be re-written in a matrix form k k kY X    , 

1 2( , ,..., ) 'k k k knY y y y is iid  having mean kX  and 

variance
2
k , 1 2( , ,..., ) 'k k k kne e e  where 

0 1( , ,..., ) 'k k kl    k k kX n l   matrix of 

explanatory variables. 
We consider a simple linear relationship between the 

response variable kY  and the explanatory variable kX

given by k k k kY X    , where 0 1(1 , )k ki kiX x and

0 1( , ) 'k   . 'kiy s follows univariate t  distribution 

with mean k kX  , variance
2

k , and degree of freedom v  

which is given by 

12 ( )
2 2

21/ 2 2 1/ 2

1
( )

( )2( ; , , )  (1 )
( ) ( )( )

2

                                                                           

                                                     

v
k k

k k
kk

v
y X

f y v
v vv

y


 

 








 



    

2                       > 0, 0  

                                                  

v 

A. ESTIMATION METHOD 

The maximum likelihood (ML) estimators of the 
thk

profile parameters of the univariate t  distribution are 
given by 

^
1  ( ' ) 'k k k k k k kX W X X W Y  ,                  (1)                      

 

^ ^
^

2 ( ) ' ( )
    k k k k k k k

k

Y X W Y X

n

 


 
   

where  

1

2

0 . . . 0

0 0 0 0 0

0 0 . 0 0 .

. . 0 . 0 .

. . . 0 . .

0 0 . . 0

k

k

k

kn
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 
 
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 

  
 
 
 
  

, and 

2

2

1
    

( )
ki

k k k

k

v
w

Y X
v











  

is the weight assigned to each i which down-weights 
outlying observations. [15] noted that the degree of down-
weighting of outliers increases as the degree of freedom v  

decreases and the estimation  is form of M  estimation of 
[11], yielding robust estimates. 
The ML estimators above correspond to system of 
nonlinear equations. The solution to this is achieved 
through iterative methods. The expectation 
maximization (EM) algorithm is used to determine the 
ML estimates. According to [16], the EM algorithm 
provides a general approach of computing the maximum 
likelihood of iteratively reweighted least squares among 
many others. The algorithm involves two steps; the 
expectation step followed by the maximization step. 



Professional	Statisticians	Society	of	Nigeria 
																																									Edited Proceedings of 2nd International Conference																								                   Vol. 2, 2018 

341 

 

 
© 2018, A Publication of Professional Statisticians Society of Nigeria 

 

 
B. CONTROL CHART 
 
Consider the construction of control limits from historical 
data set (HDS) to determine whether the profiles are 

statistically in-control.  The 
thk profile 

0 1 1ki k k ki kiy x e    parameters which are used in 

construction of the control limits are usually unknown but 
are estimated from the HDS. A particular profile will be 
statistically in-control only when the estimated parameters 
of the profile are within the control limit. If a particular 
profile is found to be outside the limits, the profile is 
removed and the control limits is re-constructed. The 
estimators of the parameters for the control chart are given 
as  

^

^
1

m

k
k

m



 


, and  

^
2

^
2 1

m

k
k

m



 


 where 
^

k and 

^
2
k are 

estimated parameters from the 
thk profile obtained from 

equation (1) and (2). 

The covariance matrix S  between the intercepts ko and 

the slope 1k  is given as 

1

m

k
k

S S


  where 
1 2( 3)

( ' )
( 1)

k k

v
S X X

v





 is given 

by (Lange et al. 1989). 
 
Iii.          Result and discussion  
 
The partial regression adjusted axial response and axial 
forces data set of [17] were used to test this new 
approach. The first 10 profiles of the data set are used 
and each profile is of the first 63 observations. This is to 
ensure a balanced data set. Q-Q plot is used to test the 
normality of the observations of the profiles. The graph 
of the residuals Q-Q plot (Appendix A) of each profile 
indicates that the observations of each profile do not 
follow normal distribution and there is presence of 
outlier(s). The degree of freedom of the t  distribution 

is considered to be known and it is fixed at 3v  . 
Lange et al (1989) noted that fixing v  priori at some 
reasonable value serves as robustness tuning parameter. 
However, as v the t  distribution tends to 
normal distribution as shown in Table 1’ 

 
Table1: Shows the estimates of the intercept and slope of each profile assuming normality of the profile observations, Huber 
Psi function and t-distribution.  
 
 

Profile 
Normal Huber Psi function t- distribution (df = 3) 

t- distribution 

(df = 10000) 
Intercept 

(s.d. error) 
Slope 

(s.d. error) 
Intercept 

(s.d. error) 
Slope 

(s.d. error) 
Intercept 

(s.d. error) 
Slope 

(s.d. error) 
Intercept 

(s.d. error) 
Slope 

(s.d. error) 
1 9.19067    

(1.53698) 
21.01043    
(0.09406) 

9.914273          
(1.147741) 

21.075233        
(0.071669) 

9.59333    
(1.07012) 

21.04818    
(0.06652) 

 9.19139    
(1.48589)    

21.01047    
(0.09398) 

2 12.51793    
(1.32720) 

21.01441    
(0.07912) 

12.25573         
(1.220862)   

21.03470            
(0.071643) 

12.34472    
(0.98961) 

21.03412    
(0.05726) 

12.51778    
(1.29584) 

21.01443    
(0.07907)   

3 15.43731    
(1.21173) 

21.03126    
(0.07135) 

15.40820       
(1.100840)     

21.04764       
(0.063526)    

15.3572     
(0.8953) 

21.0470     
(0.0512) 

15.43728    
(1.18769)    

21.03128    
(0.07133)   

4 13.37306    
(1.23833) 

21.02059    
(0.07615) 

13.48609        
(1.115475) 

21.05278          
(0.065750) 

13.48371    
(0.91658) 

21.04278    
(0.05406) 

13.37335    
(1.26556)    

21.02062    
(0.07611)   

5 15.66052    
(1.23819) 

21.01520    
(0.07393) 

15.62588     
(1.030532)   

21.04116       
(0.061113) 

15.68596    
(0.89595) 

21.03573    
(0.05215) 

15.66055    
(1.21206)    

21.01522    
(0.07392)   

6 13.30175    
(1.26554) 

21.14188    
(0.07525) 

13.43622     
(1.091846)    

21.17619     
(0.062791)   

13.40757    
(0.92749) 

21.16643    
(0.05335) 

13.30201    
(1.23816)    

21.14190    
(0.07522)   

7 10.47084    
(1.26585) 

21.14060    
(0.07196) 

10.01981    
(0.950704)   

21.16393    
(0.055044) 

10.15082    
(0.86593) 

21.16528    
(0.04985) 

10.47017    
(1.18726)    

21.14063    
(0.07192) 

8 12.05117    
(1.29595) 

21.04610    
(0.07433) 

11.58730    
(1.081016)   

21.06525     
(0.061868) 

11.63786    
(0.96328) 

21.06775    
(0.05489) 

12.0507     
(1.2951)    

21.0461     
(0.0743) 

9 7.59535    
(1.21100) 

21.04789    
(0.06759) 

7.002119       
(1.031929)    

21.057667      
(0.055534) 

7.14891    
(0.90495) 

21.05841    
(0.04826) 

7.59473    
(1.21152)    

21.04790    
(0.06757) 

10 9.30926    
(1.21112) 

21.04804    
(0.06804) 

8.94910       
(1.079191)    

21.06202     
(0.058145) 

9.04297    
(0.90508) 

21.06478    
(0.04853) 

 9.30893    
(1.21112) 

21.04805    
(0.06802) 
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The result of the intercepts and slopes of the ten profiles as 
indicated in Table 1 shows that the estimates of t 
distribution with 3v  are more efficient than the Huber 
psi function, least square approach and t  distribution of

10000v  . This is evident as the standard error of the 

estimates of the t  distribution with 3v  is smallest than 
that of the Huber Psi function estimates, least square and 

t  distribution of 10000v  .   
 

VI.           Conclusion 
 
This paper has considered the use of t  distribution to 
model simple linear profile as robust approach when the 
profile data are not normally distributed usually caused by 
 outliers. The data set of the partial adjusted axial response 
and axial force of[17] was used and the estimates of the 

Y  intercept and slope of the simple linear profile were 
evaluated using the t  distribution, Huber psi function and 
least square approach. The results indicate that the standard 
error of the estimates of t  distribution with 3-degree of 
freedom is the smallest when compared with the Huber psi 
function, the least square method. This shows that at 3-
degree of freedom, using t  distribution to model linear 
profile when the data are not normally distributed produces 
better estimates. However, at 10000-degree of freedom 
t  distribution estimates tend to estimates obtained using 
the least square approach. 
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APPENDIX A 
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