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Abstract- We consider the use of f-distribution which is a

heavy tailed distribution in the estimation of parameters of
linear profile when the data are not normally distributed. The
estimates of parameters of the linear profile obtained from
this approach are compared with estimates obtained from two
other approaches; Huber function (which has heavy tail than
normal distribution) which is a robust approach and least
square method. The results obtained indicate that the new
approach produced better estimates at three (3) degree of
freedom and the estimates with the least square approach at
ten thousand (10000) degree of freedom.
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I. INTRODUCTION

In Statistical Process Control (SPC), someuquality and
process characteristics may be better (explained as a
function of some independent or explanatory variables.
Such a situation in SPC is usuallyreferred to as “profile”.
Monitoring of profile entails monitoring of the parameters
of the profile over time to khowsif there is change in the
profile as a result of chamge_in the parameters of the
profile. This involves two phases; phase I which is a
retrospective phaseifi which the parameters of the profile
are estimated from histerical data sets which are used to
construct a control ¢hart to determine whether the profiles
are in- statistical. control, and phase II which involves the
futureprofile monitoring based on the in-statistical control
chart established in phase 1.

Consider, ¥, = f'(x;, B, )+ &, wherel,, is the quality

or process characteristics (response variable) of the k"
profilek =1,2,...,m, f defines the functional form

between Y, and X - Jf may be linear or nonlinear. X I

is the jth explanatory , Variable of the k" profile
j=L2,...1, ,Bjk is theweffect of the jth explanatory

variable on the A profile, &, is the error term which is

usually assumed to b¢ independently identically distributed
(ii.d)normal random variable with mean zero and

varidnée G.. The error term accounts for other factors
which cannot be explained by the explanatory variable but
affect the response variable.

A number of researchers [1, 2, 3, 4, 5] have considered
linear profile monitoring assuming that the functional form

f of the response variable kaith respect to explanatory

variable is linear and the error term is independent
identically distributed normal. They used least square
method of estimation “classical approach” to estimate the
parameters of the profile for Phase 1. The least square
method is known for its computational ease, its estimated
parameters are optimal and it is the maximum likelihood
estimators for the parameters of the linear function when
the error terms are normally distributed [6]. The
assumptions of independence and normality of the error
terms however, do not always hold [7, 8 9 ]. [9]
considered the effect of non-normality on phase I and
concluded that the false alarm rate of phase I increases in
the presence of non-normality of the error terms. [10]
studied the effect of non-normality and autocorrelation on
linear profile and noted that the violation of normality and
independent identical distribution assumption affect the
performance of the control chart and may lead to
misjudgement of the process status.

Robust methods have been developed to reduce the effect
of outliers on estimators and to produce estimates which
are optimal around the neighbourhood of the assumed
model [11] and [12].

In profile monitoring, [13] considered nonparametric
L —1regression methods, [14] considered the use of
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weighted functions, Huber and bisquare. The Huber M —
estimate is known to have normal distribution between the
interval [—k,k]and exponential distribution outside the
interval which provides the least favourable distribution
[12]; where K is the tuning parameter. According to [11],
the Huber least favourable distribution appears to have
longer tail than the normal distribution and observation that
is farther away from other observations that the Huber’s
least favourable distribution cannot accommodated may be
discarded. And this may lead to having estimates which do
not reflect all the possible information contained in the
observations. In this paper, we will consider a distribution
which has longer tail than the Huber’s least favourable
distribution with a view to accommodating far outlying
observation(s) and at the same time make robust the effect
of the outliers on the estimated parameters of the profile.
Section 2 considers the formulation of the model. Section 3
deals with the estimation of parameters, sections 4, 5, and
6 deal with the construction of Phase I control chart,
Implementation and conclusion respectively.

II. MATERIALS AND METHODS

Let y, = f(x,;,B,)+e, defines the k™ functional
relationship between the response and the explanatory.
variables, wherek =1,2,...,m is the number of profiles,
i=1,2,...,n is the number of observations in.the 1%

profile, and j =1,2,...,/is the number of /xplanatory

variables in the k" profile. It is assumed/that the form of
functional relationship f is linear andie,, *vis” iid random
variable with mean zero and _variance o’ from ¢
distribution. We have a linear medel with unknown

parameters & = (f3,, o) givén by

I
Vi = Zﬂijkij +e, ; where x,,, =1
=0

This can be re-written in a matrix form Yk =X k £+ &,

Y =/ s¥i0s--s Vi) 'is did having mean X, SBand
. 2 _ '

variance 0, , & = (ekl 5€a5eees e,m) where

B=BrosBises By)' Xy =m %1, matrix of

explanatory variables.
We consider a simple linear relationship between the

response VariableYk and the explanatory variable X X

given byY, =X, B, +¢&,, where X, =(1,,,X,,)and
ﬂk = (ﬂo, ﬂl)' - Vi 'S follows univariate ¢ — distribution

. . 2
with mean X i ﬁk , variance 0, , and degree of freedom v

which is given by
v+1
r( ) _ 2 _ LH)
S Broi’v) = 2 (1+ O szﬁk) ) 3
(wr)”zl"(g)(akz)“z VO
—0<y<m

o> 0,v>0

A. ESTIMATION METHOD

The maximum likelihood (ML) estimators of the k"
profile parameters of the,univariate #— distribution are
given by

A

ﬂk :(Xk'VVka)_]Xk'VVkYk’ 6]
O_Az vl (Y](_Xkﬂk)'VVk(Yk_Xkﬁk)
k n
where
Wit 0 0
0 Weo 0 0 0 O
wo=|0 0 L0 0L
0 0
0
10 0 .0 Win
v+1
YT T X, B
y 2B
Oy

is the weight assigned to each iwhich down-weights
outlying observations. [15] noted that the degree of down-
weighting of outliers increases as the degree of freedom v

decreases and the estimation is form of M — estimation of
[11], yielding robust estimates.
The ML estimators above correspond to system of
nonlinear equations. The solution to this is achieved
through  iterative = methods. The  expectation
maximization (EM) algorithm is used to determine the
ML estimates. According to [16], the EM algorithm
provides a general approach of computing the maximum
likelihood of iteratively reweighted least squares among
many others. The algorithm involves two steps; the
expectation step followed by the maximization step.
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S = sz where S, Z(V—+3)(X'X)_IO'IE is given
k=1 (v+1)
Consider the construction of control limits from historical by (Lange et al. 1989).
data set (HDS) to determine whether the profiles are
I, RESULT AND DISCUSSION

k™ profile
Vi = Bio + BuXi T €, parameters which are used in

statistically in-control. The

construction of the control limits are usually unknown but
are estimated from the HDS. A particular profile will be
statistically in-control only when the estimated parameters
of the profile are within the control limit. If a particular
profile is found to be outside the limits, the profile is
removed and the control limits is re-constructed. The
estimators of the parameters for the control chart are given
as

A

m A m
2
XA 2o C
_ k=l 2 _ k= 2
p= ,and O~ = e where [, and O are

estimated parameters from the K" profile obtained from
equation (1) and (2).

The covariance matrix S between the intercepts ﬁko and

the slope f3,, is given as

The partial regression adjusted axial response_and axial
forces data set of [17] were used to test this new
approach. The first 10 profiles of the data set are used
and each profile is of the first 63 obseryations. This is to
ensure a balanced data set. Q-Q plot is used to test the
normality of the observations of the profiles. The graph
of the residuals Q-Q plot (Appendix A) of each profile
indicates that the observationstof each profile do not
follow normal distribution “and there is presence of
outlier(s). The degree of ficedom of the f — distribution
is consideredeto besKnown and it is fixed atv=3.
Lange et al (1989) noted that fixing V priori at some
reasonable value serves as robustness tuning parameter.
Howevergmas “Ww —> o0 the ¢ —distribution tends to
normal distribution as shown in Table 1’

Tablel: Shows the estimates of the intercept and slope of each profile assuming normality of the profile observations, Huber

Psi function and t-distribution.

Normal Huber Psi function I- distribution (df = 3) L distribution
Profile (df =10000)
Intercept Slope Intercept Slope Intercept Slope Intercept Slope
(s.d. error) (s.d. error) (s.d. etror) (s.d. error) (s.d. error) (s.d. error) (s.d. error) (s.d. error)
1 9.19067 21.01043 9914273 21.075233 9.59333 21.04818 9.19139 21.01047
(1.53698) (0.09406) (1.147741) (0.071669) (1.07012) (0.06652) (1.48589) (0.09398)
2 12.51793 21.01441 12.25573 21.03470 12.34472 21.03412 12.51778 21.01443
(1.32720) (0.07912) (1.220862) (0.071643) (0.98961) (0.05726) (1.29584) (0.07907)
3 15.43731 21.03126 15.40820 21.04764 15.3572 21.0470 15.43728 21.03128
(1.21173) (0.07135) (1.100840) (0.063526) (0.8953) (0.0512) (1.18769) (0.07133)
4 13.37306 21.02059 13.48609 21.05278 13.48371 21.04278 13.37335 21.02062
(1.23833) (0:07615) (1.115475) (0.065750) (0.91658) (0.05406) (1.26556) (0.07611)
5 15.66052 21.01520 15.62588 21.04116 15.68596 21.03573 15.66055 21.01522
(1.23819) (0.07393) (1.030532) (0.061113) (0.89595) (0.05215) (1.21206) (0.07392)
6 13.30175 21.14188 13.43622 21.17619 13.40757 21.16643 13.30201 21.14190
(1.26554) (0.07525) (1.091846) (0.062791) (0.92749) (0.05335) (1.23816) (0.07522)
7 10.47084 21.14060 10.01981 21.16393 10.15082 21.16528 10.47017 21.14063
(1,26585) (0.07196) (0.950704) (0.055044) (0.86593) (0.04985) (1.18726) (0.07192)
8 12.05117 21.04610 11.58730 21.06525 11.63786 21.06775 12.0507 21.0461
(1.29595) (0.07433) (1.081016) (0.061868) (0.96328) (0.05489) (1.2951) (0.0743)
9 7.59535 21.04789 7.002119 21.057667 7.14891 21.05841 7.59473 21.04790
(1.21100) (0.06759) (1.031929) (0.055534) (0.90495) (0.04826) (1.21152) (0.06757)
10 9.30926 21.04804 8.94910 21.06202 9.04297 21.06478 9.30893 21.04805
(1.21112) (0.06804) (1.079191) (0.058145) (0.90508) (0.04853) (1.21112) (0.06802)
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The result of the intercepts and slopes of the ten profiles as
indicated in Table 1 shows that the estimates of #—

distribution with v = 3are more efficient than the Huber
psi function, least square approach and 7 — distribution of

vy =10000. This is evident as the standard error of the

estimates of the ¢ — distribution with v = 3is smallest than
that of the Huber Psi function estimates, least square and

t — distribution of v =10000 .

VI. CONCLUSION

This paper has considered the use of f—distribution to
model simple linear profile as robust approach when the
profile data are not normally distributed usually caused by
outliers. The data set of the partial adjusted axial response
and axial force of[17] was used and the estimates of the
Y — intercept and slope of the simple linear profile were
evaluated using the ¢ — distribution, Huber psi function and
least square approach. The results indicate that the standard
error of the estimates of 7 —distribution with 3-degree of
freedom is the smallest when compared with the Huber psi
function, the least square method. This shows that at 3-
degree of freedom, using # — distribution to model linear
profile when the data are not normally distributed produges
better estimates. However, at 10000-degree of freedom
t — distribution estimates tend to estimates obtained using
the least square approach.
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APPENDIX A

Sample Quantiles

Sample Quantiles

Standardized Residuals Q-Q plot of profile 1

Theoretical Quantiles

Standardized Residuals Q-Q plot of profile 2

Theoretical Quantiles

Sample Quantiles

Sample Quantiles

Standardized Residuals Q-Q plot of profile 3

Theoretical Quantiles

Standardized Residuals Q-Q plot of profile 4

Theoretical Quantiles
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Standardized Residuals Q-Q plot of profile 5

Theoretical Quantiles

Standardized Residuals Q-Q plot of profile 6

Theoretical Quantiles

Sample Quantiles

Sample Quantiles

Standardized Residuals Q-Q plot of profile 7

Theoretical Quantiles

Standardized Residuals Q-Q plot of profile 8

Theoretical Quantiles
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Standardized Residuals Q-Q plot of profile 9 Standardized Residuals Q-Q plot of profile 10
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