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i. Introduction  

In simple terms, a split-plot experiment is a blocked 
experiment, where the blocks themselves serve as 
experimental units for a subset of the factors. Thus, there are 
two levels of experimental units. The blocks are referred to 
as whole plots while the experimental units within blocks 
are called split plots, split units, or subplots. Corresponding 
to the two levels of experimental units are two levels of 
randomization. One randomization is conducted to 
determine the assignment of block-level treatments to whole 
plots (WP). Then, as always in a blocked experiment, a 
randomization of treatments to split-plot (SP) experimental 
units occurs within each block or whole plot ([4], [2]). 
Hence, they are designed experiments that can be viewed as 
two experiments combined or overlaid on each other or as 
[3] puts it; superimposition of two similar or different form 
of designs. Much research has been done in estimating the 
parameters of the split-plot design linear and response 
surface models respectively ([5], [7], [6], [10], [2], [1]). 

Nonlinear modeling of split-plot design has attracted 
few researches especially in estimating the parameters of the 
model. Although, it follows the same procedure used in 
parameter estimation for nonlinear regression. [8] stated that 
when the objective of fitting a nonlinear function to data 
from a split-plot experimental designs, a nonlinear model 
with variance components (whole plot variance, σ2

γ and 
split-plot variance, σ2

ε) is appropriate. 

The nonlinear model with split-plot errors is a special 
case of the nonlinear model with variance components. This 
is so because the model contains a nonlinear function for the 
mean, g(X, θ), and the random effects, such as whole plot 
and subplot errors, are added to the mean function. Standard 
nonlinear regression programs make the assumption that all 
the observations in the data set are uncorrelated and that 
there is only one source of random variation. If they are used 
to fit models with more than one random error term, they 
give incorrect standard errors for the parameter estimates 
and for other quantities of interest. Hence, if an ordinary 
nonlinear regression program is used to analyze data from a 
split-plot experiment, the single variance estimate, MSE, 
will be a compromise between the two error variances, 
commonly called MSEa and MSEb, from the split-plot 
analysis of variance ([8], [9], [11]).  
In this research paper, a theoretical presentation of an 
iterative Gauss-Newton via Taylor Series expansion 
procedures for estimated generalized least square (EGLS) 
technique in estimating the parameters of a nonlinear split-
plot design (SPD) model where the variance components are 
unknown and are estimated via restricted (residual) 
maximum likelihood estimation (REML) method. 

II. RESEARCH METHODOLOGY 

The nonlinear split-plot model which has whole plot error 
(WPE) and subplot error (SPE) are special case of nonlinear 
model with random effects (also called nonlinear model 
with variance components, that is, WPE and SPE). The 
formulated model and assumptions are given as follows. 

Let  

  w Xfy ),(    (1) 

Inserting the levels of the factors to be investigated, (1) is 
given as follows. 

ijklijkijklijkl w xfy   ),(    (2) 

where, 
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ijky  is the response variable; i = 1, ..., S replicates or block; 

j = 1, ..., a levels of the WP factor A; k = 1, ..., b levels of 

the SP factor B; ijkw  is the WP error and ijkl  is the SP 

error; ),(  xf ijkl  is the nonlinear function for the mean. 

Assumption 1: it is assumed that the WP and SP errors are 
random effects. Also, it is assumed that 

),0( 2
...

~ WPNw
dii

ijk   and ),0( 2
...

~ SPN
dii

ijkl  . 

Assumption 2:  Let ̂  be the model parameter estimate of 
θ which follows an asymptotic normal distribution with 

mean   and variance
12 )( FF , where F is the n × p 

matrix with elements    ) xf ijkl ,(  which has full 

column rank, p. This implies that the estimated response 0ŷ  

follows an asymptotic normal distribution with mean y0 and 

variance xx fFVFf 1 1)(   where fx is a p × 1 vector with 

elements    ) xf ,( 0000  and V is the covariance 

matrix of the response vector. 

Assumption 3: if the parameters in the mean function, 

),(  xf ijkl  is p and the number of random effects is r, then 

the number of observations in the data set, n, must be at least 
p + r +1 in order to estimate all of the parameters. This 
implies that n ≥ p + r +1. 

Estimated generalized Least Square (EGLS) Estimation 
Method   

When the covariance matrix of y is known then the 

generalized least squares estimator, GLS̂ , is found by 

minimizing the objective function ([8])  

   ) ,() ,( 1  XfyXfy 


 V    (3) 

with respect to  . Where V is a known positive definite 
(non-singular) covariance matrix which arises from the 
model 

ijklijkijklijkl wxfy   ) ,(    (4) 

where, E( ijkw ) = 0, Cov( ijkw ) = N
2Iw , E( ijkl ) = 0 and 

Cov( ijkl ) = N
2I . 

Let the variance-covariance matrix of the observations 
var(y) be written as 

 V = NI2
w  + NI2

  

     = K2 . 
Using spectral decomposition, it can be established that V is 
positive definite if and only if there exists a non-singular 
matrix P such that 
  V = PPt. 
Multiplying model (4) by P-1 on both sides yields 

       
)5()( 

)( ),( 

1-

-1-1-1

ijkl

ijkijkl wxfy





P

PPP




  

where, 
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Define T = y-1P , ),(),(  ijklijkl xfx -1PM   and 

)()( ijklijkw -1-1 P PE  . Then the model (5) becomes 

T = ),( ijklxM  +      (6)  

where, E( ) = 0 and V( ) = I2 . Thus the GLS model 
has been transformed to an OLS model. Hence, model (6) is 
to be solved using the OLS technique as follows. 
Taking the summation of both sides of (6) and square we 
have   

  )7(),(
2

2






S

S

i

a

j

b

k

c

l
ijklijkl

i
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j
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k
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l
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x MT

Ε

 

Let  

L(θ*) =
S

i

a

j

b

k

c

l
ijkl
2  

         =   
S
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minimize L(θ*) w.r.t. θ* and equate to zero we have,

 

)8(0
),(

),(
)(

ˆ

*

*


























 


















i

ijkl

i

a

j

b

k

c

l
ijklijkl

i

x

x
L

M

MT
S

  
At this point, equation (8) has no closed form hence will be 
solved iteratively using the Gauss-Newton method via 

Taylor series expansion of ) ,( ijklxM  at first order  

)9()(
!

)(
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where 
dx

xdf
af

)(
)(   around x = a, and 1pR  is the 

remainder term which is reasonably small if p is sufficiently 
large. Therefore, we have  
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(10) 

Let )() ,(   ijklxM   

and 

*
0

*

*

) ,(















p

ijkl

ijkl

x
d

M
 for all N cases and 

*
0  

 then (10) becomes 

 0
*
0 )()( D

    (11)  

where 0D  is the N×P derivative matrix with elements {

pijkld  } and this is equivalent to approximating the 

residuals for the model, that is, )()(    T  by 

  0
*
0 )()( D  T  

           =  0
*
0 )( DT    

           =  00 Dz     (12)  

where 0z  = )( *
0T  and 

*
0  

. 

Applying the Householder (1958) QR decomposition ([12], 
[13]) to (12) and this is due to its numerical stability 
characteristic for estimating the parameters in the model 

Klotz (2006). This is done to decompose 0D  into the 

product of an orthogonal matrix and an inverted matrix.  

Theorem 1: If A is an m × n matrix with full column rank, 
then A can be factored as A = QR where Q is an m × n 
matrix whose column vectors form an orthonormal basis for 
the column space of A and R is an n × n invertible upper 
triangular matrix. 

Proof: Let m × n matrix have columns nwww ,..., 21  m-

vectors.  

Also, let mnn qqqqq ,...,,,..., 121   be orthonormal m-

vectors such that,  

1iq , 0j
T
i qq  if i ≠ j 

Then Q is m × n with orthonormal columns, QTQ = I. If A is 
a square matrix (m = n), then Q is orthogonal, that is, QTQ 

= QQT = I, hence, iq  is orthogonal to nwww ,..., 21 . 

Therefore,  
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This implies that A = QR 
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                                                            (14) 

Let A =  nwww 21  and R = qw  , therefore, 

equation (14) is written as 
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 
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Equation (15) shows that R is n × n, upper triangular with 
nonzero diagonal elements and R is non-singular (diagonal 
elements are nonzero).  

Theorem 2: If A is an m × n matrix with full column rank, 
and if A = QR is a QR-decomposition of A then the normal 
system for Ax = b can be expressed as Rx = QTb and the 

least squares solution can be expressed as bx TQR 1  ˆ  . 

Proof: Let bx TT AAA 1)(  ˆ   be the best approximate 

solution to Ax = b. Based on the orthonormal and 
orthogonal property exhibited by QR-decomposition, if 

A = QR  
then  

AT = RTQT. 
Therefore,  

bx TT AAA 1)(  ˆ  = (RTQT QR)– 1 RTQTb 

       RTQT QR x̂  = RTQTb (QT Q = 1) 

  RT R x̂  = RTQTb 

  x̂  = R – 1QTb.  (16) 
Based on the two stated and proved theorems on QR-

decomposition, the decomposition of 0M  is presented as 

follows. 

 Let QR0M  

where Q is an N×N orthogonal matrix, that is, 

IQQQQ  TT
 and R is an N×P triangular matrix, 

that is, R is zero below the main diagonal. Writing Q and R 
as follows, 

     21 Q|QQ    

where 1Q  is the first P columns and 2Q  is the last N – P 

columns of Q , and 

 









2

1

R

R
R   

with 1R  a P×P upper triangular matrix with all elements 

greater than zero and 2R  is a (N – P)×P lower matrix of 

zeros. Also, 

 









T
2

T
T 1

Q

Q
Q  

where 
T
1Q  and 

T
2Q  are of dimension P×N and (N – P)×N 

respectively. Therefore, 

110 RQQR M    (17) 

Geometrically, the columns of Q  define an orthonormal, or 

orthogonal, basis for the response space with the property 
that the P columns span the expectation plane. Projection 
onto the expectation plane is then very easy if the projection 

is in the coordinate system given by Q  ([12]).  

Next is transformation of the response vector, which is 

0
T zg Q     (18) 

with components 

0
T
1 zg1 Q     (19)   

and  

0
T
2 zg2 Q .    (20) 

The projection of g onto the expectation plane is then simply 










0

1g
      

    
in the Q coordinates and 

 11
1

1
0

ˆ g
g

QQ 







    (21)   

in the original coordinates. So, 

 1
-1
10 gR          

this implies 

 10 g1R     (22)  

Equation (22) can now be easily estimated using backward 
solving ([13]). The point 

 )()(ˆ
0

*
0

*
11     

should now be closer to y than )( *
0 , and then move to 

this better parameter value 0
*
0

*
1    and perform 

another iteration by calculating new residuals 1z  = 

)(T *
1 , a new derivative matrix 0M , and a new 

increase. This process is repeated until convergence is 
obtained, that is, until the increment is so small that there is 
no useful change in the elements of the parameter vector 
([12]).  

It is expected that the new residual sum of square should 
be less than the initial estimate but if otherwise, a small step 

in the direction 0  is introduced. A step factor   is 

introduced such that ([12]) 

0
*
0

*
1        
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where   is chosen to ensure that the new residual sum of 
squares is less than the initial estimate. A common method 

as suggested by [12] is to start with  = 1 and halve it until 
it is satisfied that the new residual sum of squares is less than 
the initial estimate.  

In actual practice the GLS is not possible to be 
implemented, however, because the variance-covariance 
matrix, V, is unknown. Therefore, an estimated V is 
obtained and substituted into equation (3) and the term 
Estimated Generalized Least Square (EGLS) is used. There 
are many methods for estimating the variance components 
to substitute for V in equation (3). In this research work the 
procedure for residual maximum likelihood estimation 
(REML) technique is presented. The next subsection 
presents the technique estimation procedure. 

 Variance Component Estimation Via MLE 

Residual maximum likelihood estimation (REML) 

procedure does not involve 
̂  in the estimation of the 

variance component. The likelihood function is based on 
vectors in the error space, that is, on linear combinations of 
y which have expectation to be zero rather than y itself. To 
obtain these vectors in the error space the linear 

approximation of the residuals is used   00 Dz  as 

shown in (12). 
 To estimate the variance components from the 

nonlinear functions of y that won’t involve
̂ , vectors of 

the form yk   is formed whereby k is chosen so that 

0 0 Dk  which falls in the linear approximation to the 

error space. yk   is called the error contrasts ( [14]), that is, 

the part of the data that is orthogonal to the fixed effects (not 
dependent on the values of the fixed effect estimates), k is a 
vector from a full rank matrix K and applying maximum 

likelihood to yK  , the log likelihood function of yK  , is 

 

      KKKV  K ln )( lnΘ ln ,
2

1

2

1
2

2
Xfyπ

n
L

        KKKV  K ,
1

Xfy 


    (23) 

where  22 2 , SPWP   Θ , is then approximated by 

the surface and letting ln L to be Γ  equation (23) becomes, 
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By iterative maximization of (24) at (h + 1)st iterations, the 
system equation yields, 
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then equation (25) becomes  
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The solutions to the equations may turn out to be 
negative when further iteration does not improve the log 
likelihood. In such a case, the negative value is reset to zero 
before the next iteration. 
 
 

III. RESULTS AND DISCUSSION 

 
This paper presents the procedure and steps in estimating the 
parameters for a split-plot design model where the mean part 
of the model can be any nonlinear function and the variance 

components (
22 2 , SPWP  

) of the model are estimated 

via residual maximum likelihood estimation (REML) 
technique. This was achieved by minimizing the objective 
function,  

   ) ,() ,( 1  XfyXfy 


 V  where the estimates 

of 
̂  and 

22 2 , SPWP  
 are iteratively obtained at (h 

+ 1)st iteration by substituting a prior estimate of  2  to the 
estimating equation till convergence occurs.  
This was done by transforming the generalized least square 
(GLS) nonlinear split-plot design model into an ordinary 
least square (OLS) nonlinear split-plot design model using 
iterative Gauss-Newton via Taylor Series expansion 
procedure approximated at first order. Householder QR 
decomposition technique was introduced into the estimation 
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system to achieve stability in the estimates. However, in 

estimating the variance components, 2
,

22
SPWP  

 , 
̂  

is not involved. The likelihood function was based on 
vectors in the error space where the linear approximation of 

the residuals is used   00 Dz  and these vectors are 

not dependent on the values of the fixed effect estimates. 

IV. CONCLUSION 

The estimated generalized least square (EGLS) method 
presented in this paper is often applied for estimating linear 
fixed, random and mixed-effect split-plot design models. 
However, in practical applications the functional form of the 
mean part of a model is often nonlinear due to dynamics 
involved in the system process. This paper presents the 
procedure and steps in estimating the parameters for a split-
plot model where the mean part of the model can be any 
nonlinear function and the variance components (

2
,

22
SPWP  

 ) of the model are estimated via residual 

(restricted) maximum likelihood estimation (REML) 
technique. This is achieved by minimizing the objective 

function,    ) V)  ,(
1

,( XfyXfy 


  where the 

estimates of 
̂  and 2

,
22

SPWP  
  are iteratively 

obtained at (h + 1)st iteration by substituting a prior estimate 

of 
 2

  to the estimating equation till convergence is 
achieved. To achieve these iterative procedures for 
estimating the parameters of the nonlinear split-plot models, 
statistical software such as the %NLINMIX SAS macro can 
be used to handle all computations. 
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