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Abstract — 1In this paper, a theoretical iterative Gauss-
Newton via Taylor Series expansion procedures for estimated
generalized least square (EGLS) technique is presented in
estimating the parameters of a nonlinear split-plot design
(SPD) model where the variance components are unknown and
are estimated via restricted maximum likelihood estimation
(REML) method.
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I. INTRODUCTION

In simple terms, a split-plot experiment is a blocked
experiment, where the blocks themselves serve as
experimental units for a subset of the factors. Thus, thefe ate
two levels of experimental units. The blocks are referred to
as whole plots while the experimental units within ‘blocks
are called split plots, split units, or subplots. Corresponding
to the two levels of experimental units are two levels of
randomization. One randomization, isconducted to
determine the assignment of block-level'treatments to whole
plots (WP). Then, as always in fa_blocked experiment, a
randomization of treatments to’split-plot (SP) experimental
units occurs within each bloek or whole plot ([4], [2]).
Hence, they are designed/€xperimients that can be viewed as
two experiments combinéd or overlaid on each other or as
[3] puts it; superimposition of two similar or different form
of designs. Muchstesearch has been done in estimating the
parameters of’ the split-plot design linear and response
surface models respectively ([5], [7], [6], [10], [2], [1]).

Nonlinear, modeling of split-plot design has attracted
fewiresearches especially in estimating the parameters of the
modely Although, it follows the same procedure used in
parameter estimation for nonlinear regression. [8] stated that
when the objective of fitting a nonlinear function to data
from a split-plot experimental designs, a nonlinear model
with variance components (whole plot variance, ¢°, and
split-plot variance, ¢°;) is appropriate.

The nonlinear model awith split-plot errors is a special

case of the nonlinear model with variance components. This
is so because the model ¢contains’a nonlinear function for the
mean, g(X, 0), and thé-random effects, such as whole plot
and subplot errors, areradded to the mean function. Standard
nonlinear regression programs make the assumption that all
the observations in the data set are uncorrelated and that
there is onlypone source of random variation. If they are used
to fit models ;with more than one random error term, they
give/incorrect standard errors for the parameter estimates
and_for ‘other quantities of interest. Hence, if an ordinary
nonlinear regression program is used to analyze data from a
split-plot experiment, the single variance estimate, MSE,
will be a compromise between the two error variances,
commonly called MSE, and MSE,, from the split-plot
analysis of variance ([8], [9], [11]).
In this research paper, a theoretical presentation of an
iterative Gauss-Newton via Taylor Series expansion
procedures for estimated generalized least square (EGLS)
technique in estimating the parameters of a nonlinear split-
plot design (SPD) model where the variance components are
unknown and are estimated via restricted (residual)
maximum likelihood estimation (REML) method.

II. RESEARCH METHODOLOGY

The nonlinear split-plot model which has whole plot error
(WPE) and subplot error (SPE) are special case of nonlinear
model with random effects (also called nonlinear model
with variance components, that is, WPE and SPE). The
formulated model and assumptions are given as follows.
Let

yv=f(X,0)+w+¢ (1)
Inserting the levels of the factors to be investigated, (1) is
given as follows.

Vi = J Ky » O) + Wi + g 2
where,
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Vijk is the response variable; i = 1, ..., S replicates or block;

j=1, .., alevels of the WP factor A; k=1, ..., b levels of
the SP factor B; Wik is the WP error and Eijkl is the SP

error; f'(X;4,, @) is the nonlinear function for the mean.

Assumption 1: it is assumed that the WP and SP errors are

random  effects. Also, it is  assumed  that
iid. s iid. s

lek ~ N(O)O-WP) and gljkl ~ N(O;O-SP)-

Assumption 2: Let & be the model parameter estimate of
6 which follows an asymptotic normal distribution with

mean @ and variance o> (F'F) ™", where F is the n x p
matrix with elements (af (Xu,0)/ 89') which has full

column rank, p. This implies that the estimated response )A/O
follows an asymptotic normal distribution with mean yo and
variance £ (F'V'F)'f_ where f. is a p x 1 vector with
elements (9f (X000 0) / 00') and V is the covariance
matrix of the response vector.

Assumption 3: if the parameters in the mean function,
S (X » €) is p and the number of random effects is , then

the number of observations in the data set, n, must be atléast
p + r +1 in order to estimate all of the parametets. This
implies thatn >p + r +1.

Estimated generalized Least Square (EGLS) Estimation
Method

When the covariance matrix, of*y is known then the
generalized least squares estimator, HGLS’ is found by

minimizing the objective function ([8])

(v=£(X,0) Vy =7 (x,0)) )

with respect to”@ ?Where V is a known positive definite
(non-singular)' covariance matrix which arises from the
model

Vi = (K> O) + Wy, + &4 “4)
where JB(w,, ) = 0, Cov(wy, ) = o0, E(&;,) =0 and
Cov(&y,) = ol

Let the variance-covariance matrix of the observations
var(y) be written as

) 2
v=oc I + o1y

=o0’K.
Using spectral decomposition, it can be established that V is
positive definite if and only if there exists a non-singular
matrix P such that
V =PP.
Multiplying model (4) by P! on both sides yields

P_ly = P_lf(xg/kl ,0) + p’ (W[/‘k)
+P (&) )

where,

CO\/(P'leij,d )+ Cov(P'lwijk )
=P ColP 'z, P ) + P Cov(Pw,, [P |

=P (P-l )t [Core i )+ CO"(szk )

—p oK (p?)’

P PRA(P )

=o’1

Defing Th< Py, M(x;,,60%) =P f(x,,0) and

E=P" (W) + P! (&) - Then the model (5) becomes

T=M(x,,,0") +E (6)

where, B(®)=0and V(E ) = ¢*I . Thus the GLS model
has been transformed to an OLS model. Hence, model (6) is
to be solved using the OLS technique as follows.
Taking the summation of both sides of (6) and square we
have

a b

N c
35S
g
a b

I)IPIN I LI T ™
J ok )

i

S a b
- ZZ Z Z [Tijkl - M(x;, 9*)]2
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minimize L(6*) w.r.t. 0% and equate to zero we have, =z, —D,d (12)
ZZZZ[TUH ~M(x;,0° )] where zy = T—7(6,) and 5 =60" -0, .

oM(x,,,,0
x —(x”"i ) -0 (8)

06,

i 0*:é*

At this point, equation (8) has no closed form hence will be
solved iteratively using the Gauss-Newton method via

Taylor series expansion of M(x;,,0") at first order

(x— )

S =f@)+(x-a)f(@)+——f"(a)+
PO @) 1R, ©
P!
: 4 ,
where f'(a) :% around x = a, and R, is the

remainder term which is reasonably small if p is sufficiently
large. Therefore, we have

M(x;,,6")
* (xl b 9 )
= M(xijkl ,0,)+ (‘9 ‘910 )#
1 0 =6
* * aM(xi‘kl’e*)
+(6, — 0y )——
00, v oa
. . OM(x,,,0"
+(6, - 9@% ¢10)
p 07=0,
Let M(x,,0") =n(0")
M (x,, 0"
and d = M for all N cases and
o6,
0" =6,

0=0"- 49; then'(10) becomes
17(02).54(0,) + D& (11
where /D, is the NxP derivative matrix with elements {
dijklxp
residuals for the model, thatis, E(8") = T —n(6") by
E@") =T~ [7(6) + D3]

= T—ﬂ(@J)—D05

¥ and this is equivalent to approximating the

Applying the Householder (1958) QR decomposition ([12],
[13]) to (12) and this is due to its numerical stability
characteristic for estimating the parameters in the model

Klotz (2006). This is done to decompose D, ntd the

product of an orthogonal matrix and an inverted matrix.

Theorem 1: If A is an m x n matrix with full column rank,
then A can be factored as A = QR where O is an m X n
matrix whose column vectors form_ an orthonormal basis for
the column space of A and R is'an n X n invertible upper
triangular matrix.

Proof: Let m x n matrix‘’havejeolumns w,, w,,...w, m-
vectors.

Also, let g ,q 5, G, >4 1159,
vectors such that,

T e
||qi||:1, 4, q,°=0 ifi#j
Then.@ 1s X n with orthonormal columns, OO = 1. If 4 is
assquate matrix (m = n), then Q is orthogonal, that is, 0"Q

=00" = I, hence, ¢, is orthogonal to W, W, ,...Ww, .

be orthonormal m-

Therefore,
wy =(w - q,)q,
wy =Wy - q,)q, + (W, - q,)9,

w,=(w, -q)q, +(w, - q,)q, +

et w, - q,)q, (13)
This implies that 4 = OR
[ w, wl=le, @ - q,]
W -q)) W-gqy) - (w-q,)
o 0 (w, - q5) (W -4,)
0 0 (W -4y)
(14)
Let A = [W1 W, e wn] and R = w-q, therefore,

equation (14) is written as
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A=lg, 9,  q,]
Rll R12 Rln
o O R Ra 15)
0O 0 - R

nn

Equation (15) shows that R is n X n, upper triangular with
nonzero diagonal elements and R is non-singular (diagonal
elements are nonzero).

Theorem 2: If A is an m x n matrix with full column rank,
and if A = QR is a QR-decomposition of A then the normal
system for Ax = b can be expressed as Rx = O™b and the

least squares solution can be expressed as X=R"'Q"b.

Proof: Let X=(A"4A)" A"b be the best approximate

solution to Ax = b. Based on the orthonormal and
orthogonal property exhibited by QR-decomposition, if

A=0R
then

AT — RTQT.
Therefore,

x=(A"A)" A"b=(R"O" OR)Y ! RTQ"b
RTQTOR X =R"Q'b (Q"0=1)
RTR X =R7Q™
X =R 0. (16)

Based on the two stated and proved theorems on)QR=
decomposition, the decomposition of M, is présented as
follows.

Let M, = QR
where Q is

QTQ = QQT =1 and R is an NxP triangular matrix,
that is, R is zero below the maifr-diagonal. Writing Q and R

as follows,
Q=[0s1Q.]
where Q) is the first.P columns and Q,, is the last N — P

columns of Q ,4fid

o)

with“R 4, a PxP upper triangular matrix with all elements

an NxN orthogonaly matrix, that is,

greatef than zero and R, is a (W — P)xP lower matrix of
zeros. Also,
T
QT _ Q1
1T

2

where QT and Q; are of dimension PxN and (N — P)xN

respectively. Therefore,
M, =QR=QR, (17)

Geometrically, the columns of Q define an orthonormal, or
orthogonal, basis for the response space with the pfoperty
that the P columns span the expectation plane. Projection
onto the expectation plane is then very easy if the projection
is in the coordinate system given by Q ([12]).

Next is transformation of the response/veetor, which is

2=Q"z, (18)
with components

g1=Qiz (19)
and

g, =Q; b (20)

The projection.of glonto the expectation plane is then simply
&l
0

insthe, Q coordinates and

- &1
Th :Q{O}:ngl 1)
in the original coordinates. So,
-1
%, =Rjg;
this implies
RS, =g, (22)

Equation (22) can now be easily estimated using backward
solving ([13]). The point

B =n(0)) = (0, +6,)
should now be closer to y than 77(6, ), and then move to
this better parameter value &, =6, +J, and perform
another iteration by calculating new residuals Zz,

T-7(6,). a new derivative matrix M, and a new

increase. This process is repeated until convergence is
obtained, that is, until the increment is so small that there is
no useful change in the elements of the parameter vector

([12).
It is expected that the new residual sum of square should
be less than the initial estimate but if otherwise, a small step

in the direction 50 is introduced. A step factor A is
introduced such that ([12])
60 =6 + A5,
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where A is chosen to ensure that the new residual sum of
squares is less than the initial estimate. A common method
as suggested by [12] is to start with A = 1 and halve it until
it is satisfied that the new residual sum of squares is less than
the initial estimate.

In actual practice the GLS is not possible to be
implemented, however, because the variance-covariance
matrix, V, is unknown. Therefore, an estimated V is
obtained and substituted into equation (3) and the term
Estimated Generalized Least Square (EGLS) is used. There
are many methods for estimating the variance components
to substitute for V in equation (3). In this research work the
procedure for residual maximum likelihood estimation
(REML) technique is presented. The next subsection
presents the technique estimation procedure.

e Variance Component Estimation Via MLE

Residual maximum likelihood estimation (REML)

procedure does not involve @° in the estimation of the
variance component. The likelihood function is based on
vectors in the error space, that is, on linear combinations of
y which have expectation to be zero rather than y itself. To
obtain these vectors in the error space the linear

approximation of the residuals is used z, = D0 + &€ sas

shown in (12).
To estimate the variance components from*the

nonlinear functions of y that won’t involve 8", vectors of

the form k'y is formed whereby k is chosén soythat
k'D, =0 which falls in the linear approXifhation to the

error space. k'y is called the error contrasts.(.f14]), that is,

the part of the data that is orthogonahto thefixed effects (not
dependent on the values of the fixedseffect estimates), k is a
vector from a full rank matrix K and applying maximum

likelihood to K'y , the log likelihood function of K'y , is

In L(@):—%ln (2;;)—%1:1 K'VK| —%(K'y -

KAV K) T (K - K7(X,0))
whefe @ = (0'2
the surface and letting In L to be I equation (23) becomes,

(23)

= O'szp , O'§P ), is then approximated by

n 1 ,
F(@):—Eln @m)-1n K'VK|

—%sz(K’VK)_lK'ZO (24)

24

K/ (x.0))

By iterative maximization of (24) at (4 + 1)* iterations, the
system equation yields,

<,,[{v(;g(l—ao (opo0) 20vi |
it o))
el [5l-poleoiton Beg W]
([sf-adin oo

1 N
Let Q( h) = ( )(1 - Dy (DOV(h)DO) DbV(hl))
then equation (25) becemes

(it s @) T ) - (bep¥s )
<(6']2'(h+1))>:<”(é Vi Q ])>

(26)

The solutions to the equations may turn out to be
negative when further iteration does not improve the log
likelihood. In such a case, the negative value is reset to zero
before the next iteration.

IIIl. RESULTS AND DISCUSSION

This paper presents the procedure and steps in estimating the
parameters for a split-plot design model where the mean part

of the model can be any nonlinear function and the variance
components (> = JV2VP ,O SZP ) of the model are estimated

via residual maximum likelihood estimation (REML)
technique. This was achieved by minimizing the objective
function,

(v—£(X.0) V"

of é* and 0'2’

(y - (X, 9)) where the estimates
= O-VzVP , O ;P are iteratively obtained at (2

+ 1) iteration by substituting a prior estimate of & 2" to the
estimating equation till convergence occurs.

This was done by transforming the generalized least square
(GLS) nonlinear split-plot design model into an ordinary
least square (OLS) nonlinear split-plot design model using
iterative Gauss-Newton via Taylor Series expansion
procedure approximated at first order. Householder QR

decomposition technique was introduced into the estimation
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system to achieve stability in the estimates. However, in

estimating the variance components, o2 = O'I%VP , UéP’ 0"
is not involved. The likelihood function was based on
vectors in the error space where the linear approximation of

the residuals is used z, = DyO + & and these vectors are
not dependent on the values of the fixed effect estimates.

IV. CONCLUSION

The estimated generalized least square (EGLS) method
presented in this paper is often applied for estimating linear
fixed, random and mixed-effect split-plot design models.
However, in practical applications the functional form of the
mean part of a model is often nonlinear due to dynamics
involved in the system process. This paper presents the
procedure and steps in estimating the parameters for a split-
plot model where the mean part of the model can be any
nonlinear function and the variance components (
02' = a%VP,agp) of the model are estimated via residual
(restricted) maximum likelihood estimation (REML)
technique. This is achieved by minimizing the objective

G- rx.0) v (- rx.0)

estimates of 6" and 52 =a§VP,U§P are iteratively

function, where  the

obtained at (4 + 1) iteration by substituting a prior estimate

'

of o2 to the estimating equation till convergeneenis
achieved. To achieve these iterative procedures /for
estimating the parameters of the nonlinear split-plétmodels,
statistical software such as the %NLINMIX SAS macro can
be used to handle all computations.

ACKNOWLEDGMENT

The authors are grateful to angnymous reviewers for their
valuable comments on the originaldraft of this manuscript.

REFERENCES

[1] Jones, B. and“Goos, P. (2012). I-optimal versus D-optimal
Split-Plot*“tesponse surface designs. Research Paper,
D/2012/1169/002. www.ua.ac.be/tew and www.repec.org

[2] Jones, B. and Nachtsheim, C. J. (2009). Split-plot Designs:
Whatwhy, and How. Journal of Quality Technology, 41(4):
340-361.

(3]

(4]

(3]

(6]

(7]

(8]

9]

[10]

[11]

[12]

[13]

[14]

Hinkelmann, K. and Kempthrone, O. (2008). Design and
Analysis of Experiments Vol 1: Introduction to Experimental
design, 2" Edition. New York: Wiley.

Montgomery, D. C. (2008). Design and Analysis of
Experiments, 7" ed. New York, NY: John Wiley & Sons.

Letsinger, J. D.; Myers, R. H.; and Lentner, Mu(1996).
Response Surface Methods for Bi-Randomization, Structures.
Journal of Quality Technology 28: 381-397.

Kowalski, S. M., Cornell, J. A. and Vining, G. G.(2002). Split-
plot designs and estimation methods for/mixture experiments
with process variables. Technometries, 44:572-79.

Draper, N. R. and John, J. A£(1998). Response surface designs
where levels of some factors'are difficult to change. Australia,
New Zealand Journal of Statistics, 40: 487-495.

Gumpertz, M. L. and, Rawlings, J. O. (1992). Nonlinear
Regression with_Variance Components: Modeling Effects of
Ozone on Crop Yield. Crop Science, 32: 219 — 224.

Blankenship, E. E., Stroup, W. W., Evans, S. P. and Knezevic,
S..Z. (2003). Statistical inference for Calibration Points in
Nonlinear Mixed Effects Models. American Statistical
Association and the International Biometric Society Journal of
Agricultural, Biological,

and Environmental Statistics, 8(4): 455 — 468.

Vining, G. G., Kowalski, S. M. and Montgomery, D. C.
(2005). Response surface designs within a split-plot structure.
Journal Quality Technology, 37: 115-129.

Knezevic, S. Z., Evans, S. P., Blankenship, E. E., Van Acker,
R. C., and Lindquist, J. L. (2002). Critical period for weed
control: the concept and data analysis. Agronomy — Faculty
Publications. Paper 407.
http://digitalcommons.unl.edu/agronomyfacpub/407

Bates, D. M., and Watts, D. G. (1988). Nonlinear Regression
Analysis and Its Applications. New York: Wiley.

Klotz, J. (2004) A computational approach to statistics.
University of Wisconsin, Madison:USA.
https:/www.mimuw.edu.pl/~pokar/Statystykal/Literatura/Klot
zBook.pdf

Harville, D. A. (1977). Maximum likelihood approaches to
variance components estimation and to related problems.
Journal of the American Statistical Association, 72: 320-338

© 2018, 4 Publication of Professional Statisticians Society of Nigeria

386



