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Abstract—The efficiencies of the derivatives of beta
polynomial family are the focus of this paper. Kernel density
derivatives estimation play a very fundamental role in
statistical data analysis especially for exploratory and
visualization purposes. As a result of their wide applicability,
studying their efficiencies as the order of the derivative
increases is of a great importance. In this paper, the efficiencies
of the derivatives of beta polynomial kernels are obtained from
the efficiency of the classical second order kernels, The
efficiencies of the derivatives of beta polynomial kernels for
some higher powers were obtained and the results presented
showed that the efficiency tends to increase as.the powers of
the beta polynomial kernels and the derivatiye order increases.
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I. INTRODUCTION

One of the nonparamétric'estimation techniques with wider
applications is the kesnel density estimator. The wide
applicability of this estimator is due to the ease of its
implementationy, [1]. Kernel density estimation is the
construction of a probability density estimates from a given
sample| with;few assumptions about the kernel density
funetion. As a nonparametric estimator for exploration and
visualization of data, its application has been extended to the
machine learning community and also forms the building
blocks for different semiparametric estimators [2, 3]. The
derivatives of the kernel estimator possess vital statistical
applications such as locating the local extrema and
identification of the point of inflexion of a distribution [4].

Other aréas where kernel derivatives can be applied are time
serieshanalysis [5], human growth data analysis [6],
investigation of data using the submicroscopic nanoparticles
property [7], chemical compositions inferences [8],
estimation of the optimal smoothing parameter in kernel
density estimation and regression estimation [9]. In
parameter estimation and hypothesis testing density
derivatives has a significant role to play, therefore proper
estimation of the density derivatives from the set of
observation is very important [10].

The major challenge confronting the implementation of
kernel density estimation is the choice of smoothing
parameter. In univariate kernel estimation, the problem of
smoothing parameter selection is with less complexity when
compared with the multivariate setting where there are
different forms of smoothing parameterizations [11]. The
choice of smoothing parameter is also very important in
kernel density derivatives as the order of the derivative to be
estimated increases [4]. Different authors have proposed
several smoothing parameter selectors for kernel density
derivatives in the univariate case [12, 13]

II. THE KERNEL DENSITY DERIVATIVES AND BETA
POLYNOMIAL KERNELS

Kernel estimator is one of the popular nonparametric

techniques in density estimation. The univariate kernel
estimator is of the form

o8 %Z k(). W
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where K(-) is the kernel function, h is the smoothing
parameter also called the bandwidth and nis the sample
size. In most conditions particularly in scientific computing
and data intensive applications, the data set X; are
observations or measurements obtained from real life. The
kernel function is a non-negative function that satisfies the
following conditions.

fl((x)dx =1,
fxl((x)dx =0 and (2)

fle((x)dx =k,(K)>0.

The first condition in Equation (2) means that any weighting
function must integrate to unity, hence most kernel
functions are probability density functions; the second
condition simply states that the average of the kernel is zero,
while the third condition means that the variance of the
kernel is not zero [14].
The commonest optimality criterion used in selecting
smoothing parameter in Equation (1) is the Asymptotic
Mean Integrated Squared Error (AMISE) which is made up
of two components. Asymptotic approximation of Equation
(1) using Taylor’s series expansion will yield the asymptotic
integrated variance and the asymptotic integrated squared
bias given by

AM SE

R(K)

1 2 1,4 "
74'1#2(1() R*R(f"), 3)

where R (K) is the roughness of kernel, u, (K)? i$'the seécond
moment of kernel and R(f") = [ f"(x)2dx »is the
roughness of the unknown probability density function [14,
15]. The minimum of the AMISE isithe solution to the
differential equation

9 umsE (h) = ~RK) (K)ZR3R(f") =0
oh ~ ke P e
Therefore, the smgothing” parameter that minimizes the

AMISE of the kerneléestimator is

()

dR(K)®
havse = [ ) x /() (4)

2 (K)*R(f")
The derivative'of the univariate kernel estimator is obtained
by taking the derivative of the kernel density estimator in
Equation” (1). Assuming the kernel K is sufficiently
differentiable r times, the rth density derivative of Equation
(1) is given by [14, 15, 16]

O =560 = %Z k(1) ®

where K is the rth derivative of the kernel function K and
is taken to be a symmetric probability density. In order for
the estimator in Equation (5) to exist, K must exist and
not equal to zero. If the rth derivative of the kernel
estimator in (5) is not equal to zero and continuously
differentiable, it is also required that the (r +£1)th
derivative is nonzero everywhere. The AMISE ofithesnith
derivative of the kernel function provided the kernel-K-can
be sufficiently differentiated is of the form

AM SE (f“) (x))
R(KM) 1
=z g R(T), ©)
where R(K™) is the roughness of#th derivative of kernel,
U (K)? is the second mothent ofkernel and R ( f (”2)) is the

roughness of rth unknown” probability density function
[15]. Again, the smoothing parameter that minimized
Equation (6).is,given by

(2P 1)R(K(T>)](ﬁ)

1
Ram sk = [ﬂz(K)z R(FT+D) xn~(z7%s) (7)
The order,of the bias term of the rth derivative is the same
as.@(h"*) but each new derivative order will introduce two
additional powers to h in the variance term. The smoothing
parameter for a kernel density derivative must be carefully
selected because a good density estimator may not
necessarily produce density derivative estimators that are
good especially when the order of the derivatives increases
[10]. The smoothing parameter in Equation (7) will result in
the smallest value of the AMISE given by

AM SET
_ (2r+5

) R(K(T))4/(2T+5)
2r+1/2r+5
Tl_4/2T+5. (8)

2 (K)? R(F7*+2)
% [ 2r +1

In kernel density derivative estimation, the smoothing
parameters are expected to be larger than kernel density
estimation because the derivative of any function tends to be
noisier than the function itself. The smoothing parameter
that minimizes the AMISE for the first and second
derivatives are of orders 0(n~'7) and 0(n~°) and the
AMISE are of orders 0(n™*7) and 0(n~*/°) respectively
[14].
The general pth kernel of the smooth beta polynomial
kernel family for p > 0 with {t € [—1, 1]} is of the form

(2p + D!

K,(t) = i

(1-t??, )
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where p =0,1,2,...,0 and the double factorial can be
evaluated as 2p+ D!'=CQp+1)(2p —1)..53.1. As
the value of p increases from 0 to 3, we have the Uniform,
Epanechnikov, Biweight and Triweight kernels which
belong to the beta polynomial family [17]. The popular
normal kernel is not strictly a member of this family but it is
the limiting case when p — oo [18]. In this class of kernels,
the uniform kernel is the simplest kernel while the
Epanechnikov kernel is regarded as the optimal kernel with
respect to an error criterion, the mean integrated squared
error (MISE). The popularity of this class of kernels is due
to the desire to study their mathematical properties and the
kernels with higher values of p and their estimates are
smoother and also possess more derivatives.

Ill. THE EFFICIENCY OF KERNEL DERIVATIVES
The efficiency of the univariate symmetric kernel which is

measured in comparison with the Epanechnikov kernel is of
the form [9].

1/4 4 2\ 1/4
EFF(K) = (C(Ke)) _ (R(Ke)4ﬂz(l(e)2 ) a0
C(K) R(K)*u,(K)
where C(K) = R(K)*u,(K)? is a constant of any given
kernel and C(K,) = R(K,)*u,(K,)? is the constant/of
Epanechnikov kernel. The Epanechnikov kernel produce
smallest AMISE value in the case of the classical second
order kernel and therefore, it is regarded as the optimal
kernel with respect to the asymptotic mean /integrated
squared error.

The efficiency of the kernel derivative also requires the
determination of the optimal kernel for its computation. The
Epanechnikov kernel cannot be the’optimal kernel in kernel
derivatives because its second derivative is a constant
meaning that it is not continuously differentiable. The
efficiency of the rth derivative-is‘given by

C(KTot (2r%1)/4
EfF KT = (CEK pl))>

(2r+1)/4
_ R(Kgpt)4/(2r+1)”2 (Kopt)z
R(Krr+1)4/(2r+1)ll2 (Kr41)? '

(11)

where O(Kuy.) = R(K2pe)* @D, (K,pe)? is the optimal
kernel for the rth kernel derivative function and C(K/, ) =
R(KT, )@+ Dy, (K,,,)? is the constant of any given

(r + 1)th derivative kernel function. On simplification,
Equation (11) can be written as

@2r+1)/4

Eff(K") =

R(Kgpt) (Hz (Kopt)z ) 12)

R(Ky 1) \ M2 (Kr41)?

The optimal kernel for estimating the rth derivatiye has
been shown by Muller [19] by solving for the minimum
of R(K"), subject to the conditions K, =1, K{ =
O0and K, < oo and the solution obtained is p/= (1+ 1)th
kernel from the beta polynomial kernels_ in Equation (9).
This implies that when estimating the first derivative (r =
1), the optimal kernel is the Biweight (ps= 2) but if we
desire to estimate the second deriyative ("= 2), the optimal
kernel in this case is the Triweight (p = 3), and the
optimality of the kernels gées on"in that manner. In the
computation of the efficiency ofkernel derivatives, it is only
the derivative of the nth roughness of the kernel function
that is neededswhilesthe second moment of the kernel
function is same‘irrespective of the derivative order to be
estimated.

In computing the efficiency of kernel derivatives, two very
impottant statistical quantities required are the roughness of
kernel functions and its second moment as observed in
Equation (10) and Equation (12). The rth roughness of a
kernel function is given by

R(K™)
= fKT(t)Zdt. (13)
Also, the second moment of a kernel function is of the form
o (K)
= f t2K (t)dt. (14)

In computing the statistical properties and efficiencies of the
derivatives of smooth beta polynomial kernels, we shall
specifically consider the power of p from one to seven only
and the limiting case, that is the Gaussian kernel. The
quantities in Equation (13) and Equation (14) are the
parameters of interest in the determination of the efficiency
of any kernel function.

IV. RESULTS AND DISCUSSION

We consider the statistical properties of p for which p = 0,
1, 2,...,7 and also for p = oo which is the Gaussian kernel
for the univariate kernel. For p = 0, 1, 2, 3, we have the
Uniform, Epanechnikov, Biweight and Triweight kernels
and they are of wide applications because they form the
basis when discussing this class of kernels especially the
Epanechnikov kernel in the computation of the efficiencies
of other kernel functions of this family.
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Table 4.1 is the kernel functions obtained from the general
polynomial family stated in Equation (9). Also presented in
Table 4.1 are the statistical properties of the kernel
functions; the roughnesses and second moments while their
efficiencies are corrected to three decimal places and also
expressed in percentage. The efficiency of the optimum
kernel which is the Epanechnikov kernel is 100 % while the
efficiencies of other kernel functions decrease with increase
in the values of p.

Tables 4.2; 4.3; 4.4; 4.5; 4.6; are the efficiencies of the first
to the fifth derivatives of the beta polynomial kernels while
Table 4.7 shows the efficiencies of all the order of the kernel
derivatives considered. In all the cases, the efficiencies of
the kernel functions decrease as the values of the powers of
p increases.

Table 4.1: Kernel Functions with Roughnesses, Moments and Efficiencies.

Kernel Functions R(K)
Ky(t) :% %
3 3
K1(13=z(1—12J 5
Ky (© = 1o (1— 22 =
35 350
K3(e) =55 (1 — 2)® 279
315 2205
Ki(t) = 505 (1 -5 2431
K0 =g -eF e
3003 26679
Ks(t) = 5g4g (1 —° 25000
6435 1139
K;(t) = 2096 (1—e*)7 T
1 e 1
Kg(t) = E exp (— ?) m

Pz (K EffF(K) Eff(K) %

1

3 0.930 93.0 %
1

3 1.000 100 %
1

7 0.994 99.4 %
1

) 0.987 98.7 %
1

11 0.981 98.1 %
1

i3 0.977 97.7 %
1

15 0.974 97.4 %
1

17 0.971 97.1 %
1 0.951 95.1 %

Table 4.2: Roughnesses, Moments and Efficiencies of First Derivative,

Kernel Functions R(K) i (K) Eff(K) Eff(K)%

K,(t) 3 1 0.862 86.2 %

2 3

K,(t) 15 1
7 7 1.000 100 %

Ks(t) % l
11 9 0.982 98.2 %

K,(t) 630 1
143 11 0.958 95.8 %

K:(t) 24255 1
4199 13 0.939 93.9 %

K(t) 54054 1
7429 15 0.924 92.4 %

K. (t) 66066 1
7429 17 0912 91.2 %

1

K,(t) i 1 0.820 82.0 %
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Table 4.3: Roughnesses, Moments and Efficiencies of Second Derivative.

Kernel Functions R(K) [z (K) Eff(K) Eff(K) %

Ka(t) 45 1 0.830 83.0 %

z 7

K4(t) 35 1
9 1.000 100 %

K4t 8505 1
143 11 0.972 97.2 %

Ks(t) 20790 1
221 13 0.933 93.3 %

K4(t) 45045 1
323 15 0.900 90.0 %

K (t) 1459458 1
7429 17 0.874 87.4 %

3

Ky(t) 8w | 0.681 68.1 %

Table 4.4: Roughnesses, Moments and Efficiencies of Third Derivative.

Kernel Functions R(K) M (K) EffF(K) Eff(K) %
K;(t) 1575 1 0811 81.1%
2 9
K, (t) 14175 1
11 11 1000 100 %
K< () 31185 1
13 13 0.964 96.4 U
K,(t) 1351350 i
323 15 0912 91.2 %
K-(t) 682133 1
100 17 0.867 B6.7 %
15
Kyt 16 1 0.552 55.2 %

Table 4.5: Roughnesses, Moments and Efficiencies of Fourth Derivative.

Kernel Functions R(K) s (K) Eff(K) Eff(K) %
Kq(t) 99225 1 0.798 79.8 %
2 11
Ks() 1091475 1
13 13 1.000 100 %
Ke(t) 2837835 1
17 15 0.958 95.8 %
Ko () 31378096 1
100 17 0.895 89.5 %
105
Ky(t) 324 1 0.440 44.0 %
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Table 4.6: Roughnesses, Moments and Efficiencies of Fifth Derivative.

Kernel Functions R(K) uy(K) Eff(K) Eff(K) %

Ks(0) 9823275 1 0.789 78.9 %

2 13

Ke(2) 8513505 1
15 1.000 100 %

K, (1) 88956906 1
5 17 0.953 95.3 %

945

Ko(t) PN ! 0.347 347 %

Table 4.7: Efficiencies of Second Order Kernels Derivative.

Derivative Orders (r)

3 4 5
0.811
1.000 0.798
0.964 1.000 0.789
0.912 0.95% 1.000
0.867 0.895 0.953
0.552 0.440 0.347

Kernels
SN 0 1 2

Kq(t) 0.930

K,(t) 1.000 0.862

K,(t) 0.994 1.000 0.830
K;(t) 0.987 0982 1.000
K,(t) 0.981 0958 0.972
K-(t) 0.977 0.939 0.933
K(t) 0.974 0924 0.900
K. (1) 0.971 0912 0.874
K, t) 0.951 0.820 0.68]

V. CONCLUSION

The focus of this paper is on efficiencies of derivatives of
the beta polynomial kernels for higher powers of p and for
the limiting ease which is the Gaussian kernel. The results
presented in‘Table 4.7 shows that the efficiencies of the
kernelfunctions decreases as the power of p increases and
with the Gaussian kernel being less efficient. Also noted in
Table 4.7, is that the efficiencies tend to increase as the
derivative order of the kernels increases until the optimum
point and after that it starts decreasing except for the case of
the Gaussian kernel whose efficiencies decrease as the
derivative order increases.

However, it should be clearly noted that the choice of a
kernel function should not be strictly based on its efficiency
but mainly on the degree of its differentiability since kernels
with higher powers of p tend to be smoother and possess
more derivatives and this also suggests that their estimates
will be smoother than those with fewer derivatives.

© 2018, 4 Publication of Professional Statisticians Society of Nigeria

374



Edited Proceedings of 2" International Conference

Professional Statisticians Society of Nigeria
Vol. 2, 2018

REFERENCES

[1] Schauer, K., Duong, T., Gomes-Santos, C. and Goud, B.
(2013). Studying Intracellular Trafficking Pathways
with Probabilistic Density Maps. Methods in Cell
Biology, 118:325-343.

[2] Raykar, V. C., Duraiswami, R. and Zhao, L. H. (2015).
Fast Computation of Kernel Estimators. Journal of
Computational and Graphical Statistics, 19 (1):205-220.

[3] Hérdle, W., Miiller, M., Sperlich, S., and Werwatz, A.
(2004). Nonparametric and Semiparametric Models.
Springer-Verlag Berlin Heidelberg New York.

[4] Chacon, J. E. and Duong, T. (2013). Data-Driven Density
Derivative  Estimation, with  Applications to
Nonparametric  Clustering and Bump Hunting.
Electronic Journal of Statistics, 7:499-532.

[5] Rondonotti, V., Marron, J. S. and Park. C. (2007). SiZer
for time series: A New Approach to the Analysis of
Trends. Electronic Journal of Statistics, 1:268-289.

[6] Ramsay, J. O. and Silverman, B. W. (2002). Applied
Functional Data Analysis. Springer-Verlag.

[7] Charnigo, R. and Srinivasan, C. (2011). Self-Consistent
Estimation of Mean Response Functions and /Theix
Derivatives. Canadian Journal of Statistics, 39(2):280—
299.

[8] De Brabanter, K., De Brabanter, J. ahd De Moor, B.
(2011). Nonparametric Derivative, Estimation, NAIC,
Gent, Belgium.

[9] Silverman, B. W. (1986). Density Estimation for Statistics
and Data Analysis. Chapman and Hall, London.

[10] Sasaki, H., Noh,/Y."and’Sugiyama, M. (2015). Direct
Density Derivative, Estimation and Its Application in
KL-Divergencel, Approximation.  Appearing in
Proceedings. of the 18" International Conference on
Artificial Intelligence and Statistics (AISTATS), San
Diego, CA;USA. IMLR: W&CP, Volume 38.

[11] Sileko, I. U., Ishiekwene, C. C. and Oyegue, F. O.
(2018). New Gradient Methods for Bandwidth
Selection in Bivariate Kernel Density Estimation.
Mathematics and Statistics, 6(1):1-8.

[12] Jones, M. C. (1992). Potential for Automatic
Bandwidth Choice in Variations on Kernel Density
Estimation. Statist. Probab. Letter, 13:351-356.

[13] Dobrovidov, A. V. and Rud’ko, I. M. (2010).
Bandwidth Selection in Nonparametric Estimator of
Density Derivatives by Smoothed Cross Vdlidation
Method. Autom. Remote Control, 71:209-224.

[14] Scott, D. W. (1992). Multivariate Density Estimation.
Theory, Practice and Visualisation{, Wiley, New York.

[15] Guidoum, A. S. (2015)-»Kernel Estimator and
Bandwidth Selectiomsfor Density and its Derivatives.
Department of Probabilities and Statistics, University
of Science and Téchnology, Houari Boumediene,
Algeria.

[16] Henderson,/D; J. and Parmeter, C. F. (2015). Applied
Nonparametric Econometrics. Cambridge University

Press:
[17] Hansen, B. E. (2005). Exact Mean Integrated Squared
Error®”of Higher Order Kernel Estimators.

Econhometric Theory, 21, 1031-1057.

[18] Duong, T. (2015). Spherically Symmetric Multivariate
Beta Family Kernels. Statistics and Probability
Letters, 104, 141-145.

[19] Miiller, H. G. (1984). Smooth Optimum Estimators of
Densities, Regression Curves and Modes. Annals of
Statistics, 12:766-774.

© 2018, 4 Publication of Professional Statisticians Society of Nigeria

375



Professional Statisticians Society of Nigeria
Edited Proceedings of 2" International Conference Vol. 2, 2018

© 2018, 4 Publication of Professional Statisticians Society of Nigeria

376



