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Abstract—The efficiencies of the derivatives of beta 
polynomial family are the focus of this paper. Kernel density 
derivatives estimation play a very fundamental role in 
statistical data analysis especially for exploratory and 
visualization purposes. As a result of their wide applicability, 
studying their efficiencies as the order of the derivative 
increases is of a great importance. In this paper, the efficiencies 
of the derivatives of beta polynomial kernels are obtained from 
the efficiency of the classical second order kernels. The 
efficiencies of the derivatives of beta polynomial kernels for 
some higher powers were obtained and the results presented 
showed that the efficiency tends to increase as the powers of 
the beta polynomial kernels and the derivative order increases.  
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i. Introduction  

One of the nonparametric estimation techniques with wider 
applications is the kernel density estimator. The wide 
applicability of this estimator is due to the ease of its 
implementation [1]. Kernel density estimation is the 
construction of a probability density estimates from a given 
sample with few assumptions about the kernel density 
function. As a nonparametric estimator for exploration and 
visualization of data, its application has been extended to the 
machine learning community and also forms the building 
blocks for different semiparametric estimators [2, 3]. The 
derivatives of the kernel estimator possess vital statistical 
applications such as locating the local extrema and 
identification of the point of inflexion of a distribution [4]. 

Other areas where kernel derivatives can be applied are time 
series analysis [5], human growth data analysis [6], 
investigation of data using the submicroscopic nanoparticles 
property [7], chemical compositions inferences [8], 
estimation of the optimal smoothing parameter in kernel 
density estimation and regression estimation [9]. In 
parameter estimation and hypothesis testing density 
derivatives has a significant role to play, therefore proper 
estimation of the density derivatives from the set of 
observation is very important [10]. 
The major challenge confronting the implementation of 
kernel density estimation is the choice of smoothing 
parameter. In univariate kernel estimation, the problem of 
smoothing parameter selection is with less complexity when 
compared with the multivariate setting where there are 
different forms of smoothing parameterizations [11]. The 
choice of smoothing parameter is also very important in 
kernel density derivatives as the order of the derivative to be 
estimated increases [4]. Different authors have proposed 
several smoothing parameter selectors for kernel density 
derivatives in the univariate case [12, 13] 

II. THE KERNEL DENSITY DERIVATIVES AND BETA 

POLYNOMIAL KERNELS 

Kernel estimator is one of the popular nonparametric 
techniques in density estimation. The univariate kernel 
estimator is of the form 

��(x) =
1

�ℎ
��

�

���

�
x − X�
ℎ

�,																																																		(1) 
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where �(∙) is the kernel function, ℎ is the smoothing 
parameter also called the bandwidth and �	is the sample 
size. In most conditions particularly in scientific computing 
and data intensive applications, the data set X�		are 
observations or measurements obtained from real life. The 
kernel function is a non-negative function that satisfies the 
following conditions. 

⎩
⎪
⎨

⎪
⎧ ��(x)�x = 1,																							

�x�(x)�x = 0				and												

�x��(x)�x = ��(�) > 0	.				

																																							(2) 

The first condition in Equation (2) means that any weighting 
function must integrate to unity, hence most kernel 
functions are probability density functions; the second 
condition simply states that the average of the kernel is zero, 
while the third condition means that the variance of the 
kernel is not zero [14].  
The commonest optimality criterion used in selecting 
smoothing parameter in Equation (1) is the Asymptotic 
Mean Integrated Squared Error (AMISE) which is made up 
of two components. Asymptotic approximation of Equation 
(1) using Taylor’s series expansion will yield the asymptotic 
integrated variance and the asymptotic integrated squared 
bias given by 

�����	

=
�(�)

�ℎ	
+
1

4
��(K)

�
	ℎ
��(��),																																(3) 

where �(�) is the roughness of kernel, ��(K)
�
	
 is the second 

moment of kernel and	�(��) =	∫ ��(x)��x is the 
roughness of the unknown probability density function [14, 
15]. The minimum of the AMISE is the solution to the 
differential equation  

�

�ℎ
����� (ℎ) =

−�(�)

�ℎ�
+ ��(K)

�ℎ��(��)	= 0. 

Therefore, the smoothing parameter that minimizes the 
AMISE of the kernel estimator is 

ℎ����� = �
��(�)�

��(K)
��(��)	

�

�
�

���
�

× ��� (���)⁄ .																	(4) 

The derivative of the univariate kernel estimator is obtained 
by taking the derivative of the kernel density estimator in 
Equation (1). Assuming the kernel � is sufficiently 
differentiable � times, the ��ℎ density derivative of Equation 
(1) is given by [14, 15, 16] 

��(�)(x) =
��

�x�
��(x) =

1

�ℎ���
��(�)

�

���

�
x − X�
ℎ

�,														(5) 

where �(�) is the ��ℎ derivative of the kernel function	� and 
is taken to be a symmetric probability density. In order for 
the estimator in Equation (5) to exist, �(�) must exist and 
not equal to zero. If the ��ℎ derivative of the kernel 
estimator in (5) is not equal to zero and continuously 
differentiable, it is also required that the (� + 1)�ℎ 
derivative is nonzero everywhere. The AMISE of the ��ℎ 
derivative of the kernel function provided the kernel �	can 
be sufficiently differentiated is of the form 

����� ���(�)(x)�

=
���(�)�

�ℎ����		
+
1

4
ℎ���(K)

�
	
���(���)�,																								(6) 

where ���(�)� is the roughness of ��ℎ derivative of kernel, 

��(K)
�
	
 is the second moment of kernel and	���(���)�	is the 

roughness of ��ℎ unknown probability density function 
[15]. Again, the smoothing parameter that minimized 
Equation (6) is given by 

ℎ�����
� ≈ �

(2� + 1)���(�)�

��(�)
�
	
�(�(���))

�

�
�

����
�

× ���
�

����
�.									(7) 

The order of the bias term of the ��ℎ derivative is the same 
as �(ℎ�) but each new derivative order will introduce two 
additional powers to ℎ in the variance term. The smoothing 
parameter for a kernel density derivative must be carefully 
selected because a good density estimator may not 
necessarily produce density derivative estimators that are 
good especially when the order of the derivatives increases 
[10]. The smoothing parameter in Equation (7) will result in 
the smallest value of the AMISE given by 

����� �

= �
2� + 5

4		
����(�)�

� (����)⁄

× �
��(K)

�
	���

(���)�

2� + 1
�

���� ����⁄

��� ����⁄ .																					(8) 

In kernel density derivative estimation, the smoothing 
parameters are expected to be larger than kernel density 
estimation because the derivative of any function tends to be 
noisier than the function itself. The smoothing parameter 
that minimizes the AMISE for the first and second 

derivatives are of orders �(��� �⁄ ) and �(��� �⁄ ) and the 

AMISE are of orders �(��� �⁄ ) and �(��� �⁄ ) respectively 
[14].   
The general ��ℎ kernel of the smooth beta polynomial 
kernel family for � ≥ 0	with {� ∈ [− 1,1]} is of the form 

��(�) =
(2� + 1)‼

2����!
(1 − ��)�,																																											(9) 
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where � = 0,1,2,…,∞ and the double factorial can be 
evaluated as (2� + 1)‼ = (2� + 1)(2� − 1)…5.3.1. As 
the value of � increases from 0 to 3, we have the Uniform, 
Epanechnikov, Biweight and Triweight kernels which 
belong to the beta polynomial family [17]. The popular 
normal kernel is not strictly a member of this family but it is 
the limiting case when � → ∞ [18]. In this class of kernels, 
the uniform kernel is the simplest kernel while the 
Epanechnikov kernel is regarded as the optimal kernel with 
respect to an error criterion, the mean integrated squared 
error (MISE). The popularity of this class of kernels is due 
to the desire to study their mathematical properties and the 
kernels with higher values of � and their estimates are 
smoother and also possess more derivatives. 

III. THE EFFICIENCY OF KERNEL DERIVATIVES 

The efficiency of the univariate symmetric kernel which is 
measured in comparison with the Epanechnikov kernel is of 
the form [9]. 

���(�) = �
�(��)

�(�)
�

� �⁄

= �
�(��)

���(��)
�

�(�)���(�)
�
�

� �⁄

,								(10) 

where		�(�) = �(�)���(�)
� is a constant of any given 

kernel and �(��) = �(��)
���(��)

� is the constant of 
Epanechnikov kernel. The Epanechnikov kernel produce 
smallest AMISE value in the case of the classical second 
order kernel and therefore, it is regarded as the optimal 
kernel with respect to the asymptotic mean integrated 
squared error. 

The efficiency of the kernel derivative also requires the 
determination of the optimal kernel for its computation. The 
Epanechnikov kernel cannot be the optimal kernel in kernel 
derivatives because its second derivative is a constant 
meaning that it is not continuously differentiable. The 
efficiency of the ��ℎ derivative is given by  

���(��) = �
�(����

� )

�(����)
�

(����) �⁄

=	�
�(����

� )� (����)⁄ ��(����)
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(����) �⁄

,																							(11) 

where ������
� � = �(����

� )� (����)⁄ ��(����)
�
	
is the optimal 

kernel for the ��ℎ kernel derivative function and �(����
� ) =

�(����
� )� (����)⁄ ��(����)

�
	
 is the constant of any given 

(� + 1)�ℎ derivative kernel function. On simplification, 
Equation (11) can be written as  

���(��) =	
�(����

� )

�(����
� )
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��(����)
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��(����)
�
	

�

(����) �⁄

.																	(12) 

The optimal kernel for estimating the ��ℎ derivative has 
been shown by Muller [19] by solving for the minimum 
of		�(��), subject to the conditions �� = 1,				�� =
0	and		�� 	< ∞ and the solution obtained is � = (� + 1)�ℎ 
kernel from the beta polynomial kernels in Equation (9). 
This implies that when estimating the first derivative (� =
1), the optimal kernel is the Biweight (� = 2) but if we 
desire to estimate the second derivative	(� = 2), the optimal 
kernel in this case is the Triweight (� = 3), and the 
optimality of the kernels goes on in that manner. In the 
computation of the efficiency of kernel derivatives, it is only 
the derivative of the ��ℎ roughness of the kernel function 
that is needed while the second moment of the kernel 
function is same irrespective of the derivative order to be 
estimated. 

In computing the efficiency of kernel derivatives, two very 
important statistical quantities required are the roughness of 
kernel functions and its second moment as observed in 
Equation (10) and Equation (12). The ��ℎ roughness of a 
kernel function is given by 

		�(��)

= ���(�)���.																																																									(13) 

Also, the second moment of a kernel function is of the form 

��(�)

= � ���(�)��.																																																											(14) 

In computing the statistical properties and efficiencies of the 
derivatives of smooth beta polynomial kernels, we shall 
specifically consider the power of � from one to seven only 
and the limiting case, that is the Gaussian kernel. The 
quantities in Equation (13) and Equation (14) are the 
parameters of interest in the determination of the efficiency 
of any kernel function. 

IV. RESULTS AND DISCUSSION 

We consider the statistical properties of � for which		� = 0,
1,2,…,7	 and also for � → ∞ which is the Gaussian kernel 
for the univariate kernel. For		� = 0,1,2,3, we have the 
Uniform, Epanechnikov, Biweight and Triweight kernels 
and they are of wide applications because they form the 
basis when discussing this class of kernels especially the 
Epanechnikov kernel in the computation of the efficiencies 
of other kernel functions of this family.  
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Table 4.1 is the kernel functions obtained from the general 
polynomial family stated in Equation (9). Also presented in 
Table 4.1 are the statistical properties of the kernel 
functions; the roughnesses and second moments while their 
efficiencies are corrected to three decimal places and also 
expressed in percentage. The efficiency of the optimum 
kernel which is the Epanechnikov kernel is 100	% while the 
efficiencies of other kernel functions decrease with increase 
in the values of		�. 

Tables 4.2; 4.3; 4.4; 4.5; 4.6; are the efficiencies of the first 
to the fifth derivatives of the beta polynomial kernels while 
Table 4.7 shows the efficiencies of all the order of the kernel 
derivatives considered. In all the cases, the efficiencies of 
the kernel functions decrease as the values of the powers of 
� increases. 
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V. CONCLUSION 

The focus of this paper is on efficiencies of derivatives of 
the beta polynomial kernels for higher powers of		�	and for 
the limiting case which is the Gaussian kernel. The results 
presented in Table 4.7 shows that the efficiencies of the 
kernel functions decreases as the power of � increases and 
with the Gaussian kernel being less efficient. Also noted in 
Table 4.7, is that the efficiencies tend to increase as the 
derivative order of the kernels increases until the optimum 
point and after that it starts decreasing except for the case of 
the Gaussian kernel whose efficiencies decrease as the 
derivative order increases. 

However, it should be clearly noted that the choice of a 
kernel function should not be strictly based on its efficiency 
but mainly on the degree of its differentiability since kernels 
with higher powers of � tend to be smoother and possess 
more derivatives and this also suggests that their estimates 
will be smoother than those with fewer derivatives. 
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