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Abstract — In this paper, a modified Generalized 
Poisson Regression (mGPR) for modelling count data 
with more than one heterogeneous dispersed data 
condition is presented. The mGPR is largely an 
extension of the GPR model (with one dispersion 
parameter) that is capable of detecting the presence of 
either the underdispersion or overdispersion in count 
data but not both if such are present or dominant in the 
data. The new mGPR contains two dispersion 
parameters that are capable of detecting if the data are 
plagued with the two dispersed data structures but with 
one of them more dominant in the data than the other as 
often the case with many real-life data situations. The 
parameters of the mGPR were estimated using the 
maximum likelihood method. Results from Monte-Carlo 
studies showed that the mGPR model is more efficient 
than the classical GPR model on count data with more 
than one dispersed structure as evident from the results 
of the Deviance and log-likelihood. Like the GPR model, 
the mGPR model reduces to the classical Poisson 
regression model if the data contain equidispersed 
structure. Results from the Monte-Carlo studies were 
validated on real-life data. 

Keywords - Generalized Poisson Regression, Modified 
Generalized Poisson Regression, equi-dispersion, under-
dispersion, over-dispersion, count data. 

i. Introduction 

The benchmark model for count data is the Poisson 
distribution. Count data is a type of dataset in which the 
observations can take only the non-negative integer values 
(0, 1, 2, 3, …) and these integers arise from counting rather 

than ranking. Statistical analysis involving count data can 
take several forms depending on the context in which the 
data arise. Simple counts can be taken as the number of 
occurrences of a particular event in a month for several 
years. Categorical data on the other hand represents the 
number of items belonging to each of several categories. 

The Poisson distribution is a particular case of the 
generalized linear model, in which the conditional 
distribution of the dependent variable follows a Poisson law 
and the link function is logarithmic (Winkelmann et. al. 
1994, Trussel and Rodriguez, 1990, Cameron et. al. 1998). 
It presents several advantages for statistical analysis of 
fertility as noted by Schoumaker (2006).  Poisson regression 
estimates the effects of explanatory variables on rates; the 
logarithmic form of the model is such that the exponents of 
the regression coefficients represent the relationships 
between the rates as it applies to different groups of 
individuals. For example, the fertility rates of different 
groups of women.  

One restriction of the Poisson distribution is that it 
allows only a single parameter to estimate the mean and 
variance in which the variance is equal to the mean 
(equidispersion) which is often than not is not sustainable in 
real-life situations. The cases of overdispersion (variance > 
mean), under-dispersion (variance < mean), and excess 
zeros in which the observed data contained more zero counts 
than what is ordinarily expected of Poisson distributed data 
are some of the scenarios that exist in many practical 
situations. The imposition of the Poisson regression model 
on such data may lead to biased parameter estimates, false 
conclusions, and wrong decisions. Famoye, Wulu, and 
Singh (2001) noted that the Poisson Regression model is not 
appropriate when a dataset exhibits over-dispersion. 
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Separate models have been proposed in the literature to 
handle each of these cases.  

The situation in which a count dataset contains two 
of the dispersed data structures, especially if the data 
exhibits the presence of both overdispersion and 
underdispersion is yet to be addressed in the literature. This 
kind of data structure abounds in many real-life situations. 
An example of this can be found in the fertility dataset 
(number of children born) that was stratified by either the 
levels of education or religion. Sub-populations with high 
and low levels of educations will obviously have different 
fertility structures which may trigger different dispersion 
structures in the data. Imposing either the Poisson or any of 
the Poisson-related models on such data might yield a 
suboptimal model. This kind of data situation can best be 
captured by a model that considered a possible presence of 
more than one dispersion structure in the data as is the case 
with the proposed mGPR model in this work. 
 

II. THE POISSON REGRESSION MODEL 

The general form of the Poisson distribution is given as 
 

�(��) =  
����� (��)

��!
 ;     y =  0,1,2, …                            (1) 

 
where � is the parameter of Poisson distribution and it is a 
function of some explanatory variables, X, which takes the 
exponential form below 
  �� = exp(���) 
The dependent variable ��  represents rate, for example, the 
number of births occurring to a woman (�) over a given 
period. The conditional mean of ��  that is; �(��) =
 exp(���)which also denotes the conditional variance of �� 
since the Poisson distribution is equi-dispersed. 

III. THE GENERALIZED POISSON REGRESSION 

MODEL 

Consul (1989) first presented the generalized Poisson 
regression in a monograph. Further references are; Consul 
and Famoye(1992), Famoye(1993) and Wang and 
Famoye(1997). The latter references introduced exogenous 
variables and thus a generalized Poisson regression model 
(GPR). Santos and Silva(1997b) extended the model to 
truncated data. The generalized Poisson is a genuine 
alternative to the generalized event count model as it allows 
for both over-and underdispersion and nests the classical 
Poisson regression model as a special case. This is achieved 
by introducing one additional parameter θ. The probability 
distribution function was then written as (Consul, 1989)  

�(�)

= �

�(� + ��)���������

�!
,           � = 0,1,2, …                                

0 ��� � > � ,         �ℎ�� � < 0                       

(2) 

 

Where� > 0, ��� �−1, −
�

�
� < � ≤ 1 and�(≥ 4) is the 

largest positive integer for which  
� + �� > 0 when � is negative. 
The generalized Poisson model uses the following 
reparameterizations: 

�� =  
��

1 + ���

 

�� =
���

1 + ���

 

 
where �� = exp(��

��). 
Let the response variable Yi, representing count (number of 
children born to a woman) be a generalized Poisson random 
variable, Famoye (1993). It was later referenced by Wang 
and Famoye (1997) and was used to model household 
fertility decisions. The probability function of ��is given by  
��(��; ��, �)

= �
��

1 + ���

�
�� (1 + ���)����

��!
��� �

−��(1 + ���)

1 + ���

� ,    ��

= 0,1,2, . .                (3)    
�� =  ��(��) = exp(���) = exp (�� + �����) 
Where xi is a (k-1) dimensional vector of explanatory 
variables such as educational level and some other personal 
characteristics of couples in a family as well as some 
demographic attributes of the family, and β is a k- 
dimensional vector of regression parameters.

 

The mean and variance of iY  is given by  

�(��|��) =  ��                                                                               
(4) 
and 
�(��|��) =  ��(1 + ���) �    
                         (5) 
The generalized Poisson model in (3) is a natural extension 
of the standard Poisson model. When a, which is the 
dispersion parameter equals to zero then equation (1) 
reduces to the Poisson probability function and�(��|��) =
 �(��|��)(equi-dispersion). For � > 0, �(��|��) >
�(��|��)and the generalized Poisson regression model in (1) 
represents count data with over-dispersion. For � > 0, 
�(��|��) < �(��|��) and the model in (1) represents count 
data with under-dispersion. The dispersion parameter can be 
estimated simultaneously with the coefficients in the GPR 
model in (1) as stated in Famoye(1997) 
The likelihood function of the GPR model (1) is given by 



Professional	Statisticians	Society	of	Nigeria 
																																									Edited Proceedings of 3rd International Conference																								                   Vol. 3, 2019 

570 

 

 
© 2019, A Publication of Professional Statisticians Society of Nigeria 

 

�(�, �; ��)

= � ��
��

1 + ���

�
�� (1 + ���)����

��!
��� �

−��(1 + ���)

1 + ���

��

�

���

                             (6) 

 
To estimate (�, �) in the GPR model (3), we first write the 

log-likelihood function, ���(�, �; ��)as follows:           
���(�, �; ��)

= � ��� ��
��

1 + ���

�
�� (1 + ���)����

��!
��� �

−��(1 + ���)

1 + ���

��

�

���

                    (7) 

 

= � ����� �
��

1 + ���

� + (�� − 1)���(1 + ���)

�

���

−
��(1 + ���)

1 + ���

− log (��!)                (8) 
The maximum likelihood equations for estimating �and 

� are obtained by taking the partial derivatives of the 
above equation (4) and equating it to zero. Thus, we have; 

 

����

��
= � ���

�

��
��� �

��

1 + ���

�

�

���

+ (�� − 1)
�

��
���(1 + ���)

−
�

��
�
��(1 + ���)

1 + ���

� −
�

��
log (��!)�

= 0                           (9) 
 

Since 
�

��
log(��!) = 0 

����

��
= � �

−����

1 + ���

+
��(�� − 1)

1 + ���

−
��(�� − ��)

(1 + ���)�
�

�

���

= 0                                 (10) 

      
����

���

=  
����

���

∗
���

���

= 0                                                                                                                              
 

IV. THE PROPOSED MODIFIED GPR (MGPR) 

MODEL 

Due to the fact that certain count data, such as fertility data 
are heterogeneous in nature, care must be taken in selecting 
a model that can be used to model it in order to reflect the 
heterogeneity in such data. This explains the motivation 
behind this research in which the focus is to propose a single 
model that would efficiently fit the count dataset with an 
inherent heterogeneous structure like equi-dispersed, over-
dispersed and under-dispersed structures simultaneously. 
Our proposed model was formulated by extending the GPR 
in (3) to include two dispersion parameters �� and �� in 
place of a to account for the possible existence of such 
heterogeneous data structure. This new proposal is called a 
Modified Generalized Poisson Regression (mGPR) model. 
(Oyekunle and Yahya, 2016) 

Assuming we have three different data structures 
(as may be induced by say, educational levels) in a sample 
of size (�) with group sample sizes �� , �� 
and ��, ��+��+�� = �.  For instance, the educational 
levels of respondents can have distinct structures of high, 
low, and no levels of education and it is expected that the 
fertility preference (number of children desired) could be 
influenced by these three structures of respondents’ 
educational levels. Such ideal data structure is illustrated in 
Table 1. 

 

Table 1: Table of the data structure showing the educational level of respondents and the expected dispersion patterns. 

S/N 
Level of Education in 

the sub-population 
Fertility 

Mean no. of 
Children in the  
sub-population 

Sub-population 
Variance 

Remark 

1 
⋮ 

m1 
High Low �� �� 

�� > �� 
Under-dispersion 

m1+1 
⋮ 

m2 
Low Moderate �� �� 

��  =  �� 
Equi-dispersion 

 

m2+1 
⋮ 
n 

No education High �� �� 
�� < �� 

Over-dispersion 

Source: Researcher’s Conceptualisation, 2013. 
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Therefore, following the GPR model in (3), the proposed mGPR is given by 
��(��; ��, ��, ��)

= �
��

1 + (�� −  ��)��

�
�� [1 + (�� −  ��)��]����

��!
��� �

−��(1 + (�� −  ��)��)

1 + (�� −  ��)��

� ,    ��; 0,1,2.                            (12) 

where  ��, �� ,�� and � remained as defined earlier and�� =  ��(��) = exp (�� + ����) 

The mean and variance of iY  are respectively given by  

�(��|��) =  �� =  exp (�� + ����) and  
                     (13) 

�(��|��) =  �� =  ��[1 + (�� −  ��)��]
�

= exp(�� + ����) [1
+ (��

−  ��) exp(�� + ����)]�           (14) 
For null model, �� = 0, hence, (13) and (14) becomes  
 
�(��|�� = 0) =  �� =  exp (��)     (15) 

 
 

�(��|�� = 0) =  �� =  ��[1 + (�� −  ��)��]� =
exp(��) [1 + (�� − ��) exp(��)]�      (16) 
respectively. 

 
 

The modified generalized Poisson model in (12) is an 
extension of the standard Poisson regression model. When 
a1=a2 the probability function in (12) reduces to the Poisson 
probability function and �(��|��) =
 �(��|��)(equidispersion). If �� > ��and �(��|��) <
�(��|��); the modified GPR model in (12) represents data 
with over-dispersion and represents data with under-
dispersion if  �� < ��and �(��|��) >  �(��|��)) 

The likelihood function of the GPR model (9) is given by: 

�(��, ��, �; ��) = � ��
��

1 + (�� −  ��)��

�
�� [1 + (�� −  ��)��]����

��!
��� �

−��[1 + (�� −  ��)��]

1 + (�� − ��)��

��

�

���

 ,                        (17) 

To estimate (β, a1 and a2) we first write the log-likelihood function,���(��, ��, �; ��) of the GPR model (12) as: 

���(��, ��, �; ��) = � ��� ��
��

1 + (�� −  ��)��

�
�� [1 + (�� −  ��)��]

����

��!
��� �

−��[1 + (�� − ��)��]

1 + (�� − ��)��

��

�

���

               (18) 

 

= � ��� ��� �
��

1 + (�� − ��)��

� + (�� − 1) log[1 + (�� −  ��)��] − log (��!) −  �
��[1 + (�� − ��)��]

1 + (�� −  ��)��

��              (19)

�

���

 

where, 
�� = exp(�� + ����) ;     � = 1,2, … , � , � = 1,2, … , �    

 
The maximum likelihood equation for estimating (�, �� and 
��) is obtained by taking partial derivatives of equation (17) 
with respect to each of the parameters and equating it to 
zero. 
 

1V. Simulation Study 

To compare the proposed mGPR with the existing GPR 
(Famoye, 1997) model, data were simulated based on the 
following schemes. Parameter �, the average live births in 
the population was set to be 3. In order to impose two 
heterogeneous groups (e.g. to induce over- and/or under-
dispersion) in the data, two groups of sample sizes n1 and n2 
were simulated with �� + �� = �. Equi-dispersed data sets 
were simulated from the classical Poisson distribution while 
the overdispersed and underdispersed data sets were 
simulated using the negative binomial distribution. These 
data sets were combined and mixed in the ratios; 1:3, 3:1, 
1:1, 3:2 and 2:3 in an attempt to demonstrate the modeling 

ability of the models. The dispersion parameter � was set 
such that:  

 � > 0  for overdispersed and  
 � < 0  for underdispersed datasets. 

 
Situations with �� > ��, �� < �� and �� = �� were 
considered. The study generated y-data by considering the 
following actual sample sizes: � =
200, 300, 500 ��� 1000. Under each situation, we 
examine the difference between the estimated (��� −
���)(��� ����) and �� (for GPR), we also consider their 
log-likelihood functions and the deviances. Finally, 
throughout the simulation processes, null model was 
conjectured. 

Two real life data sets: one set of underdispersed data 
containing take-over bids culled from countreg (R. package) 
and the other set which is overdispersed contains data on 
recreation demand (number of trips) from AER (R. package) 
were also used to demonstrate the performance of the model 
in comparism with the existing GPR model. The two data 
sets were analyzed differently and later combined together 
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to demonstrate the strength of each of the models in 
identifying the different dispersion structures in the data 
sets.  
          Lastly data on Nigerian National Demographic and 
Health Survey for 1999 consisting of 3552 respondents was 
used to demonstrate the performance of the model while 
also comparing this with the existing model. The fertility 
structure based on  the total number of children ever born 
to a woman after which the data has been partitioned using 
the women’s educational level was used.  

All simulations and computations were performed 
using R statistical package (www.cran.org). The log-
likelihoods and deviances for each model were also 
computed. The estimate of the deviance for the model was 
taken as: 

 ),(),ˆ(2 iiii yylylD  
                                        (26) 

Specifically, the deviances for the mGPR is determined by:
 

 
 

 





























n

i i

ii

ii

ii
i

y

y

y
yD

1 2121

21

)(1)(1

)(1
ln2

aa



aa

aa








        (27) 
 
The selection of the best model depends on which models 
present lower values of Log-likelihood and Deviance. 
 

V. RESULTS AND DISCUSSION 

Table 2:  Dispersion Parameters, Log-likelihood and Deviance of Existing and Proposed Models via Monte-Carlo Simulation 
(for data mixture 1:3/3:1 and 1:1) n=200 

 

Table 3:  Dispersion Parameters, Log-likelihood and Deviance of Existing and  Proposed Models via Monte-Carlo 
Simulation (for data mixture 2:3/3:2) n=200 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 

 
 

 
 

Note: A,B,C,D, E represents the sample mix ratios 1:3, 3:1, 1:1, 3:2, 2:3 respectively. 
  

Parameter 
(n=200) 

NB  GPR Modified-GP 

50,150 150,50 100,100 50,150 150,50 100,100 50,150 150,50 100,100 

 A1 B1 C1 A2 B2 C2 A3 B3 C3 

�� 18.3 7.65 6.67 -0.1447 0.2094 0.0335 - - - 

��� - - - - - - 3.4136 2.8063 9.6622 

��� - - - - - - 3.5553 2.7686 9.6292 

��� − ���       -0.1417 0.0377 0.033 

�̂ - - - 2.4139 46.7044 3.4171 2.4181 3.3394 3.4152 

LL -415.701 -425.235 -427.5535 -13.9033 -100.557 -735.5722 -13.9027 -696.4265 -735.5715 

Deviance 218.2573 226.526 230.9724 961.9202 2493.752 
 

145.0967 
 

1337.172 
 

190.3029 
 

164.5823 
 

Parameter 
(n=200) 

NB  GPR Modified-GP 

120,80 80,120 120,80 80,120 120,80 80,120 

 D1 E1 D2 E2 D3 E3 

�� 9.87 8.88 0.0385 0.0459 - - 

��� - - - - 2.8674 1.9501 

��� - - - - 2.8279 1.9025 

��� − ���     0.0395 0.0476 

�̂ - - 3.4104 3.4020 3.4133 3.4063 

LL -434.324 -434.787 -739.1573 -738.9322 -739.1563 -738.9317 

Deviance 226.1229 225.0118 145.1708 137.9611 
 

143.9433 
 

137.1727 
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Comparison of the GPR and mGPR 

Figure 1    Figure 2 

 

           Figure 3 

 

The deviance values for underdispersed, overdispersed and 
equidispersed simulated datasets across the sample sizes 
(200,300,500 and 1000) were separately plotted against the 
sample mix ratios to provide a visual display of the 
performance of the existing and proposed models as shown 
in figures 1,2 and 3 above.  

The dispersion parameters, Log-likelihood and 
Deviance for the different data mix were estimated using the 
NB, GPR and mGPR respectively. Tables 2 and 3 show the 
estimate for sample size 200 mixed using the mixture ratios 
described above (1:3, 3:1, 1:1, 3:2, 2:3) while tables 4 and 5 
is for sample size 300, 6 and 7 for sample size 500 and 8 and 
9 for sample size 1000.  It can be seen from the values of the 
dispersion parameters that the proposed model was able to 
recognize a set of data as being overdispersed or 
underdispersed as does the existing model.  

The difference here is that the modified (mGPR) 
model was able to filter the data by separating the data based 

on the dispersion information present in it by the parameters 
�1 and �2  thereby reflecting the different dispersion 
structures in the data set. It is also worthy of note that data 
structure and the quantum of the dispersion information in 
the data play a prominent role in the efficiency of this series 
of the count data model. 

Comparing columns B2 and B3 for GPR and mGPR 
in Table 2 for sample size 200 mixed in the ratio 1:3 
(150,50), it can be seen that the mGPR was able to better 
estimate the model by having lower log-likelihood and 
deviance than the existing GPR (LL = -100.557 and -
696.4265; Deviance= 2493.752 and 190.3029). 
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Real-Life Data:
 

Table 4:  Dispersion Parameters, Log-likelihood and Deviance of Existing and Proposed models for Real Life Data (for 
Under, Over and Combined data sets) 

Par 
 

NB GPR mGPR 
Under Over Combined Under Over Combined Under Over Combined 

 A1 B1 C1 A2 B2 C2 A3 B3 C3 

�� - - - 0.0288 1.6712 1.1986 - - - 

��� - - - - - - 3.8546 0.0174 5.9436 

��� - - - - - - 3.8256 -1.6558 4.7466 
 

���
− ��� 

      0.029 1.6732 1.1970 

�̂ 18.6 0.1715 0.2618 1.7407 2.2428 2.1556 
 

1.7328 2.2485 2.1589 

LL -201.1205 -1064.8 -201.1205 -6.1957 -3961.0 -3888.345 
 

-6.1951 -3969.0 -3888.345 

DD 109.8929 
 

483.78 671.0054 78.968 
 

45.134 
 

83.64808 
 

78.795 
 

51.759 
 

88.15664 
 

 
 
NB: 
Under-dispersed Data 
TakeoverBids (variable = bids) from countreg (R. package)  
 
Firms that were targets of takeover bids during the period 
1978–1985.A data frame containing 126 observations on 9 
variables, out of which “bids” which denotes number of 
takeover bids (after the initial bid received by the target 
firm).The data were originally used by Jaggia and Thosar 
(1993), where further details on the variables may be found. 
Sources: 
Journal of Applied Econometrics Data Archive for Cameron 
and Johansson (1997). 
http://qed.econ.queensu.ca/jae/1997-v12.3/cameron-
johansson/ 
 
Over-dispersed Data 
Recreation Demand (variable = trips) from AER (R. 
package) 
 
Cross-section data on the number of recreational boating 
trips to Lake Somerville, Texas, in 1980, based on a survey 
administered to 2,000 registered leisure boat owners in 23 
counties in eastern Texas. A data frame containing 659 
observations on 8 variables, out of which “trips” denotes 
the number of recreational boating trips. According to the 
source (Seller, Stoll and Chavas, 1985, p. 168), the quality 

rating is on a scale from 1 to 5 and gives 0 for those who had 
not visited the lake. This explains the remarkably low mean 
for this variable, but also suggests that its treatment in 
various more recent publications is far from ideal. For 
consistency with other sources, we handle the variable as a 
numerical variable, including the zeros. 
Sources: 
Journal of Business & Economic Statistics Data Archive. 
http://www.amstat.org/publications/jbes/upload/index.cfm?
fuseaction=ViewArticles&pub=JBES&issue=96-4-OCT 
 
Combined dataset 
Combination of the two datasets (i.e. The under and over-
dispersed datasets) 
  
In Table 4, the performance of the models was demonstrated 
using a set of real data sets as presented above. The two data 
sets were analyzed as earlier discussed. The negative 
binomial and the GPR models captured all the data sets as 
overdispersed: which is expected because they are models 
commonly used for overdispersed count datasets.  The bold 
figures show the situations when the proposed model 
demonstrates more efficiency in capturing the dispersion 
structure in the data sets than the existing models. It could 
be observed that when the two datasets were combined, the 
proposed model was found to outperform the existing 
models in many situations.  
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                     Figure 4                                                                                       Figure 5 

 

                                              Figure 6 

 

Figures 4,5,6 represents the Rootogram for the Real life data 
sets viz: underdispersed, overdispersed, and combined sets 
to summarize the distributional information of the variable 
used in the data. the vertical axis represents the square root 
of the frequencies while the horizontal axis represents the 
response variable as defined.  

VI. CONCLUSION 

In this paper, we introduce a modified generalized 
regression model by extending the existing GPR model with 
one dispersion parameter � (Famoye, 1993)  to  have two 
dispersion parameters ��  and �� , where �� = �� - �� in an 
attempt to really filter make some distinction between the 
dispersion information present in the data. This modified 
model is called mGPR and was compared  with the existing 
GPR in order to determine which model will have the 
strength to recognize the dispersion structure in a given data 
set with heterogeneous features. The performance of the 

models were demonstrated using different data sets ranging 
from simulated data sets; mixed in different ratios to reflect 
heterogeneity in dispersion patterns, to real life data sets, 
with heterogeneous dispersion structures. The dispersion 
parameter(s), log-likelihood and deviance were estimated 
using the two models. Smaller values of log-likelihood and 
deviance show the efficiency of any of the models. In many 
instances most especially when the models were used for 
real life data sets the mGPR gives log-likelihood and 
deviance values smaller than the existing GPR model. This 
shows that the mGPR is more efficient and can be used as 
an attractive alternative to either the Poisson, the NB and 
GPR to model overdispersed, equidispersed and 
overdispersed count data sets simultaneously. 
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