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Abstract — Many instances in statistical modelling may 
require that the data are tested for normality before 
proceeding to further statistical analysis. The classical 
tests for the assessment of normality among others are 
Kolmogorov-Smirnov (K-S) test, Lilliefors corrected K-
S test, Shapiro-Wilk test, Shapiro-Francia test, 
Anderson-Darling test, Cramer-von Mises test, 
D’Agostino skewness test, Anscombe-Glynn kurtosis 
test, D’Agostino-Pearson omnibus test, and the Jarque-
Bera test. The visual methods commonly used are the 
histogram, boxplot, pp-plot, Q-Q plot, and the stem-and-
leaf plot. This paper seeks to find out the effect of sample 
and dispersion on quantile based plots for detecting 
normality in Monte Carlo simulated and the 
transformed data. It was observed that as the sample size 
increases the data approaches normality, while it suffers 
departure as standard deviation increases. It is therefore 
recommended that the visual methods, especially the Q-
Q-plot be used for detecting normality only when the 
sample size is low and the standard deviation is high. 

Keywords - Normality, qq-plot, sample size, dispersion, 
classical tests. 
. 

i. Introduction  

The statistical methods are based on various assumptions 
that uphold the methods. One of them is the normality 
assumption. It is often required to check the normality in 
many data analyses, although normality is implicitly or 
conveniently assumed in reality. If the assumption is 
violated, interpretations and inferences based on the models 
are not reliable, if not valid. There are two ways of checking 
normality.  

The graphical methods visualize differences between the 
empirical distribution and the theoretical distribution like a 
normal distribution. The numerical methods conduct 
statistical tests on the null hypothesis that the variable is 
normally distributed. The graphical methods visualize the 
distribution using plots. They are grouped into descriptive 

and theoretical. The former method is based on empirical 
data, whereas the latter considers both empirical and 
theoretical distributions. 

II. DESCRIPTIVE PLOTS AND THEORETICAL PLOTS  

The frequently used descriptive plots are the stem-and-leaf-
plot, (skeletal) boxplot, dot plot, and histogram. When N is 
small, a stem-and-leaf plot or dot plot is useful to summarize 
data; the histogram is more appropriate for large N samples. 
A stem-and-leaf plot assumes continuous variables, while a 
dot plot works for categorical variables.  

A box plot presents the 25 percentile, 50 percentile 
(median), 75 percentile, and mean in a box. If a variable is 
normally distributed, its 25 and 75 percentile become 
symmetry, and its median and mean are located at the same 
point exactly in the middle. The P-P plot and Q-Q plot are 
more commonly used to check normality than the 
descriptive plots.  

The probability-probability plot (P-P plot or percent 
plot) compares the empirical cumulative distribution 
function of a variable with a specific theoretical cumulative 
distribution function (e.g., the standard normal distribution 
function). Similarly, the quantile-quantile plot (Q-Q plot) 
compares ordered values of a variable with quantiles of a 
specific theoretical distribution (i.e., the normal 
distribution). If two distributions match, the points on the 
plot will form a linear pattern passing through the origin 
with a unit slope. So, the P-P plot and the Q-Q plot are used 
to see how well a theoretical distribution models the 
empirical data. Although visually appealing, these graphical 
methods do not provide objective criteria to determine the 
normality of variables. Interpretations are matter of 
judgments. Therefore this paper focuses on the necessity of 
numerical methods to determine normality rather than the 
graphical methods. It is also to compare numerical results 
with judgment. 
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2.1 Theoretical Statistics 

The numerical methods of testing normality include the 
Kolmogorov-Smirnov (K-S) (Smirnov, 1948) D test 
(Lilliefors test, Lilliefors, 1967), Shapiro-Wilk’ test, 
Anderson-Darling test, and Cramer-von Mises test (SAS 
Institute 1995, von Mises, 1928).  The K-S D test and 
Shapiro-Wilk’ W test are commonly used. The K-S, 
Anderson-Darling (Anderson and Darling, 1954), and 
Cramer-von Misers (Cramer, 1928) tests are based on the 
empirical distribution function (EDF), which is defined as a 
set of N independent observations x1, x2, …xn with a 
common distribution function F(x). 
 
Table 1: Numerical tests of normality 

 Test  Statistic Sample Size (N) Distn 

Jarque-Bera (S-K) test 
2  - 

2 (2) 

Shapiro-Wilk W 20007  N  - 

Shapiro-Francia W 50005  N  - 

Kolmogorov-Smirnov D > 2000 EDF 

Cramer-vol Mises W2 > 2000 EDF 

Anderson-Darling A2 > 2000 EDF 
 

III. METHODOLOGY 

The Shapiro-Wilk statistic (1965) is the ratio of the best 
estimator of the variance to the usual corrected sum of 
squares estimator of the variance (Royston, 1982). The 
statistic is positive and less than or equal to one; being close 
to one indicate normality. The W statistic requires that the 
sample size needs to greater than or equal to seven and less 
than or equal to 2,000 (Royston, 1992). 
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the constant ai are given by (Shapiro-Wilk, 1965): 
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where  

 Tnmmm ,...,1   and nmm ,...,1  are the expected 

values of the order statistics of independent and identically 
distributed random variables sampled from the standard 
normal distribution, and V is the covariance matrix of those 
order statistics. 
The Shapiro-Francia test is an approximate test that 

modified the Shapro-Wilk test. The statistic was developed 

by Shapiro and Francia (1972) and Royston (1983). Let ix

be the ith ordered value from our size-n sample, also nim :  

be the mean of the ith order statistic when making n 

independent draws from a normal distribution. The Pearson 

correlation coefficient between x and m is then given as: 
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Under the null hypothesis that the data is drawn from a 

normal distribution, this correlation will be strong, so  'W
cluster just under 1, with the peak becoming narrower and 
closer to 1 as n increases. If the data deviate strongly from a 

normal distribution, 
'W will be smaller (Shapiro and 

Francia, 1972). 
 

IV Data Analysis 

Monte Carlo simulation Setup  

To measure the effect of sample size on quantile based plots 
for detecting normality, we simulated random numbers 

following the normal distribution with 2  ,50    for 

various sample sizes (n = 20, 50, 100, 250, 500, 1000) and 
sets of transformed variables (cubic, square, square root, 
log,   1/square root, inverse, 1/square, and 1/cubic). Standard 
deviations of 3 and 5 were introduced into the simulation in 
order to test for the effect of dispersion. All analysis was 
done using MATLAB, R2017a and STATA 12 SE. 
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Table 1: Normality tests on transformed data when n = 20 and n = 50 

Sample 
size Transformation Formula 

chi2 Pr(chi2) Swilk Pr(Swilk) Sfrancia Pr(francia) 

20 cubic x^3 0.6200 0.7340 0.9789 0.9192 0.9874 0.9764 

 square x^2 0.5400 0.7650 0.9747 0.8496 0.9827 0.9209 

 identity x 0.5100 0.7750 0.9773 0.8949 0.9856 0.9591 

 square root sqrt(x) 0.5100 0.7740 0.9793 0.9250 0.9879 0.9802 

 log log(x) 0.5200 0.7690 0.9795 0.9273 0.9882 0.9818 

 1/square root 1/sqrt(x) 0.5400 0.7620 0.9794 0.9261 0.9881 0.9816 

 inverse 1/x 0.5700 0.7530 0.9791 0.9214 0.9878 0.9795 

 1/square 1/(x^2) 0.6300 0.7280 0.9776 0.9002 0.9864 0.9677 

 1/cubic 1/(x^3) 0.7200 0.6970 0.9753 0.8597 0.9840 0.9398 

50 cubic x^3 0.5500 0.7580 0.9599 0.0885 0.9729 0.2588 

 square x^2 1.1600 0.5610 0.9696 0.2244 0.9690 0.1829 

 identity x 1.9000 0.3870 0.9654 0.1508 0.9636 0.1139 

 square root sqrt(x) 2.3100 0.3150 0.9567 0.0647 0.9605 0.0862 

 log log(x) 2.7500 0.2530 0.9531 0.0460 0.9570 0.0636 

 1/square root 1/sqrt(x) 3.2100 0.2010 0.9493 0.0319 0.9531 0.0459 

 inverse 1/x 3.7000 0.1570 0.9451 0.0217 0.9490 0.0325 

 1/square 1/(x^2) 4.5200 0.1040 0.9361 0.0095 0.9400 0.0156 

  1/cubic 1/(x^3) 5.3400 0.0690 0.9261 0.0039 0.9299 0.0072 
 

 
Fig. 1: Quantile plots of transformed data when n=20 
 

 
Fig. 2: Quantile plots of transformed data when n=50 
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Table 2: Normality tests on transformed data when n = 100 and n = 250 

Sample size Transformation Formula chi2 Pr(chi2) Swilk Pr(Swilk) Sfrancia Pr(francia) 

100 cubic x^3 1.5700 0.4560 0.9907 0.9171 0.9905 0.8401 

 square x^2 0.6200 0.7330 0.9929 0.7284 0.9927 0.6134 

 identity x 0.3400 0.8430 0.9935 0.8832 0.9933 0.7921 

 square root sqrt(x) 0.4500 0.7990 0.9932 0.9019 0.9930 0.8199 

 log log(x) 0.7100 0.7000 0.9925 0.8610 0.9924 0.7681 

 1/square root 1/sqrt(x) 1.1400 0.5670 0.9915 0.7862 0.9913 0.6821 

 inverse 1/x 1.7100 0.4250 0.9901 0.6732 0.9899 0.5662 

 1/square 1/(x^2) 3.3100 0.1910 0.9861 0.3821 0.9858 0.3080 

 1/cubic 1/(x^3) 5.2200 0.0740 0.9806 0.1504 0.9802 0.1234 

250 cubic x^3 0.7000 0.7060 0.9954 0.6552 0.9957 0.6421 

 square x^2 0.0100 0.9940 0.9961 0.7833 0.9966 0.7923 

 identity x 0.3700 0.8300 0.9955 0.6801 0.9961 0.7058 

 square root sqrt(x) 0.9000 0.6370 0.9947 0.5419 0.9954 0.5737 

 log log(x) 1.6500 0.4390 0.9937 0.3722 0.9943 0.4056 

 1/square root 1/sqrt(x) 2.6000 0.2730 0.9923 0.2163 0.9930 0.2457 

 inverse 1/x 3.7500 0.1540 0.9906 0.1066 0.9913 0.1283 

 1/square 1/(x^2) 6.3700 0.0410 0.9863 0.0172 0.9870 0.0245 

         

 1/cubic 1/(x^3) 9.2500 0.0100 0.9809 0.0019 0.9816 0.0034 

 
Fig. 3: Quantile plots of transformed data when n=100 
 

 
Fig. 4: Quantile plots of transformed data when n=250 
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Table 3: Normality tests on transformed data when n = 500 and n = 1000 

Sample 
size Transformation Formula 

chi2 Pr(chi2) Swilk Pr(Swilk) Sfrancia Pr(francia) 

500 cubic x^3 14.0500 0.0010 0.9896 0.0013 0.9891 0.0014 

 square x^2 7.4200 0.0240 0.9942 0.0555 0.9938 0.0395 

 identity x 2.5300 0.2820 0.9971 0.5331 0.9968 0.3624 

 square root sqrt(x) 1.1400 0.5660 0.9979 0.8037 0.9975 0.6014 

 log log(x) 0.5300 0.7660 0.9983 0.9013 0.9979 0.7189 

 1/square root 1/sqrt(x) 0.7400 0.6910 0.9982 0.8752 0.9978 0.6781 

 inverse 1/x 1.7900 0.4090 0.9976 0.6988 0.9972 0.4854 

 1/square 1/(x^2) 6.5000 0.0390 0.9952 0.1192 0.9947 0.0749 

 1/cubic 1/(x^3) 13.4500 0.0010 0.9909 0.0035 0.9903 0.0030 

1000 cubic x^3 28.6300 0.0000 0.9899 0.0000 0.9898 0.0000 

 square x^2 14.5300 0.0010 0.9944 0.0010 0.9944 0.0013 

 identity x 5.1400 0.0760 0.9973 0.0887 0.9973 0.0831 

 square root sqrt(x) 2.2300 0.3270 0.9980 0.2922 0.9980 0.2635 

 log log(x) 0.9200 0.6330 0.9983 0.4573 0.9984 0.4141 

 1/square root 1/sqrt(x) 1.1300 0.5690 0.9982 0.3956 0.9983 0.3583 

 inverse 1/x 2.8000 0.2470 0.9977 0.1785 0.9977 0.1642 

 1/square 1/(x^2) 9.8400 0.0070 0.9954 0.0040 0.9954 0.0047 

  1/cubic 1/(x^3) 20.1700 0.0000 0.9914 0.0000 0.9914 0.0000 
 
 

Fig. 5: Quantile plots of transformed data when n=500 

 

 

 

 

Fig. 6: Quantile plots of transformed data when n = 1000 
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V. VISUAL AND CLASSICAL RESULTS COMPARED 

Making valid conclusions on whether data is normally 
distributed or not is mostly needed by researchers across the 
globe, and this can be done using the plots and the classical 
tests carried out in this paper. Considering the plot obtained 
on the squared transformed data when n = 1000, visually, 
one may quickly say the data is normally distributed, but its 
corresponding p-values using the classical tests Chi-square, 
Shapiro-Wilk, and Shapiro-Francia are 0.0010, 0.0010, and 
0.0012 which indicate rejection of normality assumption. 
Therefore the quantile plots are most appropriate with few 
samples. 

VI. DISCUSSION OF RESULTS 

It is discovered that normality increases as the sample sizes 
increase on the quantile plots. The transformed data is used 
to compare the normality with the introduction of Chi-
square, Shapiro-Wilk and Shapiro-Francia test statistics. It 
is also discovered that dispersion has an effect on the 
normality of the transformed data, the departure from 
normality increases as the measure of dispersion increases.  

Comparison studies have concluded that order statistic 
correlation tests such as Shapiro–Francia and Shapiro–Wilk 
are among the most powerful of the established statistical 
tests for normality (Razali and Wah, 2011). One might 
assume that the covariance-adjusted weighting of different 
order statistics used by the Shapiro–Wilk test should make 
it slightly better, but in practice, the Shapiro–Wilk and 
Shapiro–Francia variants are about equally good. In fact, the 
Shapiro–Francia variant actually exhibits more power to 
distinguish some alternative hypotheses (Ahmad and Khan, 
2015). 
 

VII. CONCLUSION AND RECOMMENDATION 

Using the results obtained so far, it can be concluded that 
sample sizes and measures of dispersion have a significant 
effect on the detection of normality in a set of data using the 
quantile plots. Normality increases as the sample sizes 
increase but decrease as the standard deviation increases. It 
is therefore recommended that the quantile plot be employed 
only when the sample size is small.  However, classical tests 
always give objective and precise results. 
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