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Abstract- Spline Smoothing is used to filter out noise or 
disturbance in an observation, its performance depends on 
the choice of smoothing parameters. There are many methods 
of estimating smoothing parameters; most popular among 
them are; Generalized Maximum Likelihood (GML), 
Generalized Cross-Validation (GCV), and Unbiased Risk 
(UBR), this methods tend to underestimate smoothing 
parameters in the presence of autocorrelation error. A new 
Spline Smoothing Estimation method is proposed by 
modifying the Generalized Cross-Validation and Unbiased 
Risk methods. It is demonstrated through a simulation study 
performed by using a program written in R to compare the 
new Spline Smoothing Estimation method and the three 
existing methods, the comparison was based on the predictive 
Mean Score Error criteria. The Proposed method is 
recommended; because it performed better than other 
methods, especially for a small sample size.  

Keywords - Autocorrelation, Generalized Maximum 
Likelihood, Generalized Cross-Validation, Penalized Spline, 
Splines Smoothing, Time series and Spline regression.  

i. Introduction  

In non-parametric regression, smoothing is of great 
importance because it is used to filter out noise or 
disturbance in an observation; it is commonly used to 
estimate the mean function in a nonparametric regression 
model, it is also the most popular methods used for 
prediction in non-parametric regression models.  The 
general spline smoothing model is given as: 

                        
  iii Xfy 

                   (1.1)  
Where; Yi is the observation values of the response 
variable y, f is an unknown smoothing function, Xi is the 
observation values of the predictor variable x and εi is 
normally distributed random errors with zero mean and 
constant variance. 

The main objective of this research is to estimate f (.) 
when x i= ti but not necessarily equally spaced, with t1 < . . 
. < tn (time) and εi is assumed to be correlated. Diggle and 
Hutchinson (1989). Therefore, this research shall consider 
the spline smoothing for non-parametric estimation of a 
regression function in a time-series context with the model; 

                             
  tiii tfy 

               (1.2)  
where; Yi = observation values of the response variable y, f 
= an unknown smoothing function, ti = time for i = 1 . . . n, 
eti = zero mean autocorrelated stationary process. 
Smoothing spline arises as the solution to a nonparametric 
regression problem having the function f(x) with two 
continuous derivatives that minimizes the penalized sum of 
squares 
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(1.3) 
where; λ is a smoothing constant, the first term in the 
equation is the residual sum of square, the second term is a 
roughness penalty, which is large when the integrated 
second derivative of regression function f!!(x) is large when 
f(x) is rough (i.e. with rapidly changing slope). The 
parameter λ controls the trade-off between goodness-of-fit 
and the smoothness of the estimate and is often referred to 

as the smoothing parameter. If λ is 0 then  xf


 simply 

interpolates the data, if λ is very large, then f


will be 

selected so that  xf !!


 is everywhere 0, which implies a 
globally linear least-squares fit to all data. There is the 
need to tackle the problem associated with estimating the 
best spline smoothing methods for time series observation 
in the presence of correlational error, Diggle and 
Hutchinson (1989). 

There are vast literatures on Spline Smoothing 
modeling of time series data in the presence autocorrelated 
error; Diggle and Hutchinson (1989), Yuedong (1998), 
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Yuedong et. al. (2000), Opsomer, Yuedong and Yang 
(2001), Wahba et. al. (1995), Carew et. al (2002), Hall and 
Keilegom (2003), Francisco-Fernandez and Opsomer 
(2005), Hart and Lee (2005), Krivobokova and Kauermann 
(2007), Shen (2008), Kim, Park, Moon, and Kim (2009), 
Morton et.al. (2009), Wang, Meyer and Opsomer (2013), 
Adams, Ipinyomi and Yahaya (2017) Chen and Huang 
(2011).  

The objective of this study is to propose a new 
smoothing method (PSM) by modifying two of the existing 
spline smoothing methods (i.e. the Generalized Cross 
Validation (GCV) and Unbiased Risk (UBR)) and compare 
it with three existing estimation methods namely; 
Generalized Maximum Likelihood (GML), Generalized 
Cross Validation (GCV) and Unbiased Risk (UBR) for 
time series observations in the presence of autocorrelated 
error.  

Spline smoothing estimation methods for time series 
observations in the present of autocorrelation error were 
discussed in section one. Section two reviews the existing 
spline smoothing method and the proposed selection 
method, Section 3 presents the Monte Carlo simulation 
study, equation used for generating values in simulation 
and experimental design and data generation, section four 
compares the four methods via a simulation study, and 
finally, the result discussion and conclusion were presented 
in last section.  

   
II. GENERALIZED CROSS-VALIDATION (GCV) 

ESTIMATE METHOD 

Several methods have been proposed for choosing the 
smoothing parameter. The most attractive class of such 
method is the Generalized Cross-Validation (GCV), given 
as; 
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Where; n is Pairs of measurement/observations {xi,yi}, λ is 
Smoothing parameters, Aλ is the ith diagonal element of 
smoother matrix. 

 
a. Generalized Maximum Likelihood (GML) 

Estimation Method 

A Bayesian model provides a general framework for the 
GML method and can be used to calculate the posterior 
confidence intervals of a spline estimate.  

The GML estimates of  is the maximizers of  

                                       

   

    mnAI

yAIy
M







1

)(det

)(






  

            (1.5) 

Where;   AI det  is the product of the n – m 

nonzero eigenvalues of [I – A( )], y is Smoothing 
parameter, W is the correlation structure, A is the diagonal 
element of smoother matrix, n is the pairs of 
measurement/observations and m is number of zero 
eigenvalues, Wahba (1985).         

b. Unbiased Risk (UBR) Estimate Method 

The UBR method has been successfully used to select 
smoothing parameters for spline estimates with non-
Gaussian data; it can be developed by applying the 
Weighted Mean Square Errors.  
The Unbiased Risk is therefore given as; 
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where; n is pairs of measurement/observations {xi,yi},W is 
the correlation structure, λ is Smoothing parameters, Sλ is 
the ith diagonal element of smoother matrix. Yuedong 
(1998). 

c.  Proposed Smoothing Method (PSM) 

A Spline Smoothing model is defined as 

      
  iii Xfy 

                                  (1.7) 
where; Y is the response variable, X is vector of the 
predictor variable, F is Regression function, and    = error 
term 
GCV becomes modified as 
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To extend GCV, unbiased Risk method was proposed and 
correlation structure was introduced   as; 
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where k = 1. The new Spline smoothing selection method 
is proposed to allow the presence of correlation structure. 
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The proposed smoothing method (PSM) derived is the 
minimizer of V(λ) given by  
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where; n is Pairs of observations, λ is Smoothing 
parameter, W is the correlation structure, Sλ is the diagonal 
element of smoother matrix 
 
III.       Materials and Method 

a. Equation used for generating values in 

simulation 

A simulation study is conducted to evaluate and compare 
the performance of the four estimation methods presented 
in previous sections. The model considered is                
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where; ε’s are generated by a first-order autoregressive 
process AR (1) with mean 0, standard deviations 0.8 and 
1.0 and first-order correlations (i.e. ρ = 0.2, 0.5 and 0.8) 
and its 95% Bayesian confidence interval. Wahba, (1983) 
and Diggle, (1989). 
 

b. Experimental design and data generation 

The experimental plan applied in this research work was 
designed to have three sample Sizes (n) of 20, 60 and 100, 
three autocorrelation levels, i.e.    = 0.2, 0.5 and 0.8, four 
smoothing functions were considered i.e. λ = 1, 2, 3 and 4, 
two standard deviation were considered, i.e. σ = 0.8 and 
1.0. The data were generated for 1000 replications for each 

of the 722433  combinations of cases n, , λ, 

and σ. The criterion used is the PMSE values to evaluate 

f̂ computed according to each of the estimation given as;  
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where  ixf  is the value at knots ix of the appropriate 

function given as 
n

i
xi

05.0
  Aydin, Memmedli and 

Omay (2013). Simulation study was performed by using a 
program written in R, it was used to estimate all the model 
parameters, the criterion, the effect of autocorrelation on 

the estimated parameters and the performances of the four 
estimation methods i.e. Generalized Maximum Likelihood 
(GML), Generalized Crossed Validation (GCV), Unbiased 
Risk (UBR) and the Proposed Smoothing Method (PSM). 

IV. SIMULATION RESULT 

In this study, we presented a modified Spline smoothing 
estimation method and compared its efficiency with three 
existing estimation methods namely; the Generalized 
Cross-Validation, Generalized Maximum Likelihood and 
Unbiased Risks, we computed Predictive mean square 
errors criterion to measure their efficiency.  
a.  Performance of the four smoothing methods based 

on predictive mean square error. 

Criterion when σ = 0.8: 

 
Table 1 presents the predictive mean square error for the 
four estimators, three sample sizes, four spline smoothing 
levels and three correlation error levels at 0.8 sigma level. 
It was discovered that for GCV and for sample size 20 the 
predictive mean square error of 4.938284 at λ = 1, 
decreases to 2.789043 at λ = 2 and further decreased to 
2.018062 when λ = 4. The predictive mean square error 
increases as the level of autocorrelation increases from 
4.938284 when α = 0.2 to 5.735483 when α = 0.5 and to 
5.70041 when α = 0.8 for smoothing function (λ) = 1 and 
sample size = 20. It was also discovered that the predictive 
mean square error decreases as the sample size increases; 
at n = 20 the PMSE decreased from 4.938284 to 1.353605 
at n = 60 and further deceases from 1.353605 to 0.394855 
at n = 100 and for smoothing function (λ) = 1.  

The predictive mean square error (PMSE) of 
GML decreases from 3.788134 at λ = 1, to 3.624478 at λ = 
3 and then decreased to 3.615046 at λ = 4. At sample size 
20 the predictive mean square error is 3.902353, it 
decreased to 2.328352 as the sample size increased to 60 
and further decreased to 2.314015 as the sample size 
increased to 100. It is noticed that the PMSE of GML 
increases from 2.638143 to 2.804273 as the autocorrelation 
error level increases of 0.2 to 0.5, but decreases from 
2.804273 to 2.625861 as the autocorrelation level increases 
from 0.5 to 0.8. For all the other increase in autocorrelation 
error levels, the PMSE increased correspondingly, thus 
there is efficiency in GML. 

For the Proposed Smoothing Method (PSM), it was 
discovered that the predictive mean square error increases 
as the autocorrelation level increases and decreases as the 
sample size increases. At sample size 20 the predictive 
mean square error of 4.208490 at λ = 2 decreases to 
4.202272 at λ = 3 and further decreases to 3.615946 when 
λ = 4. The predictive mean square error of PSM decreases 
as the sample size increases, for λ = 1 and autocorrelation 
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level of 0.2. PSM decreased from 4.188747 at sample size 
= 20 to 2.853925 at sample size 60 and further decreased to 
2.287803 at sample size 100. The predictive mean square 
error of PSM increases from 2.853925 to 1.822216 as the 
autocorrelation error level increases of 0.2 to 0.5 for 
sample size is 60 and increases from 1.822216 and 
1.812007 as the autocorrelation error level increases of 0.5 
to 0.8 for sample size is 60.  
The predictive mean square error for UBR increases as the 
autocorrelation level increases and decreases as the 
smoothing levels and sample sizes increase. At sample size 
20 the predictive mean square error of 3.777261 at λ = 1, 
decreases to 3.469432 at λ = 2, decreases to 3.416732 at λ 

= 3 but increased slightly to 3.98581 when λ = 4. The 
predictive mean square error of UBR decreases as the 
sample size increases, for λ = 2 and autocorrelation level of 
0.5, UBR decreases from 3.469432 at sample size = 20 to 
1.88788 at sample size 60 and further decreased to 
1.431244 at sample size 100. The predictive mean square 
error of UBR increases from 3.416732 to 3.526772 as the 
autocorrelation error level increases of 0.2 to 0.5 for 
sample size is 20 and increases from 3.526772 and 
3.611808 as the autocorrelation error level increases of 0.5 
to 0.8 for sample size the same sample size. 
 

 

Table 1: The MSE result of the simulated study for GML, GCV, PSM and UBR in the presence of autocorrelation ( ) = 
0.3, 0.5 and 0.8 for n = 20, 60 and 100 when standard deviation (σ) = 0.8. 

 PMSE 
N = 20  N = 60  N = 100 

λ Smoothing 
Methods 

 
ρ= 0.2 

 
ρ= 0.5 

 
ρ= 0.8 

 
ρ= 0.2 

 
ρ= 0.5 

 
ρ= 0.8 

 
ρ= 0.2 

 
ρ= 0.5 

 
ρ= 0.8 

λ = 1 GCV 

GML 

PSM(k=1) 

UBR 

4.938284 

3.788134 

4.188747 

3.777261 

5.735483 

3.902353 

1.977449 

2.810875 

5.700411 

4.557857 

2.05909 

1.449087 

 1.353605 

2.328352 

2.853925 

2.101405 

3.179886 

2.429546 

1.822216 

2.317046 

5.817303 

2.625861 

1.812007 

1.118518 

 0.394855 

2.314015 

2.287803 

1.913073 

4.190077 

2.836043 

1.573442 

2.079789 

4.753061 

2.438085 

1.605743 

0.841755 

λ = 2 GCV 

GML  

PSM(k=1) 

UBR 

2.789043 

2.638143 

4.208498 

3.469432 

3.755684 

2.804237 

2.018938 

2.506771 

5.368908 

1.300494 

2.105152 

1.017353 

 1.123143 

2.19448 

2.823294 

1.88788 

1.374032 

2.018002 

1.879530 

1.616574 

4.406313 

1.027948 

1.778426 

1.230349 

 0.341562 

2.040446 

2.287803 

1.431244 

2.96876 

1.334802 

1.573403 

0.220508 

3.188995 

0.171129 

1.200836 

1.532589 

λ = 3 GCV 

GML 

PSM(k=1) 

UBR 

3.175146 

3.624478 

4.202272 

3.416732 

3.507623 

3.802802 

2.025768 

3.526772 

4.218419 

4.263339 

2.112142 

3.611808 

 2.472227 

2.094332 

1.816911 

1.857928 

1.730359 

2.958588 

0.175471 

2.525618 

1.456264 

2.996486 

1.765224 

2.564013 

 0.334902 

1.990265 

1.531958 

1.361115 

0.815361 

2.22264 

0.467133 

1.866935 

1.992452 

0.8030926 

0.124897 

3.321139 

λ = 4 GCV 

GML 

PSM(k=1) 

UBR 

2.018062 

3.615946 

4.11762 

3.398581 

3.42688 

2.800514 

2.028096 

3.512612 

2.169436 

1.250932 

2.114477 

4.927715 

 1.094332 

2.175146 

1.814626 

1.857928 

0.173144 

1.938749 

1.701375 

1.94582 

2.74644 

5.985579 

1.760514 

3.615934 

 0.332736 

1.973208 

1.500005 

1.337717 

2.765412 

1.984518 

1.430172 

1.815722 

2.928445 

5.983278 

1.098286 

3.257353 

 
Table 2 presents the predictive mean square error for the 
four estimators, three sample sizes, four spline smoothing 
levels, three correlation error levels and at 1.0 sigma level. 
It was discovered that for GCV, at α = 0.5 and sample size 
20 the predictive mean square error of 2.217985 at λ = 1, 

decreases to 2.038837 at λ = 2, decreases to 1.975886 at λ 
= 3 and further decreased to 0.873763 when λ = 4. The 
predictive mean square error increases as the level of 
autocorrelation increases from 2.217985 when α = 0.2 to  
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4.652218 when α = 0.5 and to 5.219997 when α = 0.8 for 
smoothing function (λ) = 1 and sample size = 20. It was 
also discovered that for smoothing function (λ) = 2, the 
predictive mean square error decreases as the sample size 
increases; at n = 20 the PMSE decreased from 2.038837 to 
1.036064 at n = 60 and further deceased to 0.106917 at n = 
100. 
 
The predictive mean square error (PMSE) of GML 
decreases as the smoothing parameter increases. For small 
sample size and at α = 0.8, the predictive mean square error 
decreased from 1.460676 at λ = 1 to 1.191663 at λ = 2 then 
decreases to 1.152826 at λ = 3 and further decreased to 
1.139958 at λ = 4. The predictive mean square error of 
GML decreases as the as the sample size increases.  

At sample size 20 the predictive mean square error is 
1.402249, it decreased to 1.285324 as the sample size 
increased to 60 and further decreased to 0.917754 as the 
sample size increased to 100. It is noticed that the 
predictive mean square error of GML increases from 
1.344602 to 2.150393 as the autocorrelation error level 
increases of 0.2 to 0.5, and increases from 2.150393 to 
2.723054 as the autocorrelation level increases from 0.5 to 
0.8. Thus there is efficiency in GML, but it was observed 
that predictive mean square error decreased as the 
autocorrelation error level increases. 

For the Proposed Smoothing Method (PSM), it was 
discovered that the predictive mean square error decreases 
as the autocorrelation level, smoothing parameter and 
sample size increases. At sample size 20 the predictive 
mean square error of 4.188747 at λ = 1 increased to 

4.208498 at λ = 2 but decreases to 4.02272 when λ = 3 and 
further decreases to 4.117621 when λ = 4. The predictive 
mean square error of PSM decreases as the sample size 
increases, for λ = 2 and autocorrelation level of 0.2. PSM 
decreased from 1.706005 at sample size = 20 to 1.337262 
at sample size 60 and further decreased to 1.111343 at 
sample size 100. The predictive mean square error of PSM 
decreases from 1.9762941 to 1.878994 as the 
autocorrelation error level increases of 0.2 to 0.5 for 
sample size is 20 and further decreases  from 1.878994 to 
1.62727 as the autocorrelation error level increases of 0.5 
to 0.8 for sample size is 20.  

The predictive mean square error for UBR increases as 
the autocorrelation level decreases as the smoothing level 
and sample size increases.  

At sample size 20 the predictive mean square error of 
3.946115 at λ = 1, decreases to 2.285086 at λ = 2 to 
2.166318 at λ = 3 and further decreases to 1.259853 when 
λ = 4. The predictive mean square error of UBR decreases 
as the sample size increases, for λ = 4 and autocorrelation 
level of 0.8, UBR decreases from 2.549091 at sample size 
= 20 to 2.412688 at sample size 60 and further decreased to 
1.540203 at sample size 100.  

The predictive mean square error of UBR increases 
from 2.166318 to 2.202126 as the autocorrelation error 
level increases of 0.2 to 0.5 for sample size is 20 and 
increases from 2.202126 to 2.563679 as the autocorrelation 
error level increases of 0.5 to 0.8 for sample size the same 
sample size, but it was observed that predictive mean 
square error decreased as the autocorrelation error level 
increases. 

 

                        (a)                                      (b)                                       (c)                                          (d) 
Figure 1: Plots of the observations (. . .) and Estimates (---) With Smoothing Parameters Chosen by GCV (a), GML (b), PSM (c), and UBR (d) for n = 20 
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Table 2: The MSE result of the simulated study for GML, GCV, PSM and UBR in the presence of autocorrelation ( ) =  

                0.3, 0.5 and 0.8 for n = 20, 60 and 100 when standard deviation (σ) = 1.0  
   PMSE 

N = 20  N = 60  N = 100 

λ Smoothing 

Methods 

 

α = 0.2 

 

α = 0.5 

 

α = 0.8 

  

α = 0.2 

 

α = 0.5 

 

α = 0.8 

  

α = 0.2 

 

α = 0.5 

 

α = 0.8 

λ = 1 GCV 

GML 

PSM(k=1) 

UBR 

2.217985 

1.402249 

1.9762941

3.946115 

4.652218 

2.213838 

1.878994 

2.170123 

5.219991 

2.854191 

1.62727 

2.854018 

 1.5079261 

1.285324 

1.681525 

3.477279 

3.032906 

2.424851 

1.655205 

1.895938 

3.355379 

2.860878 

2.622758 

1.904192 

 0.109678 

0.917754 

1.625184 

0.715411 

0.205153 

1.498209 

1.060796 

1.410622 

4.068174 

1.460676 

1.814121 

1.391461 

λ = 2 GCV 

GML  

PSM(k=1) 

UBR 

2.038837 

2.353263 

1.706005 

2.285086 

1.550266 

2.159928 

1.883573 

2.043898 

2.357644 

2.742754 

1.512748 

2.606053 

 1.036064 

1.61744 

1.337262 

1.686028 

3.064901 

1.745815 

1.815278 

1.615925 

3.686213 

1.801702 

1.258637 

1.94976 

 0.106917 

0.916592 

1.111343 

0.715436 

0.204841 

1.484834 

1.555058 

0.391479 

2.641265 

1.191663 

0.824054 

1.213843 

λ = 3 GCV 

GML 

PSM(k=1) 

UBR 

1.975886 

1.344602 

1.691873 

2.166318 

2.465147 

2.150393 

1.799777 

2.202126 

2.230474 

2.723054 

1.490825 

2.563679 

 1.106586 

2.376657 

1.289702 

1.335866 

1.865407 

1.703152 

1.65212 

2.149228 

1.493562 

1.747526 

1.185653 

2.283664 

 0.914299 

0.916174 

1.188291 

0.715459 

1.204822 

0.482901 

1.786081 

0.388746 

1.462472 

1.152826 

1.525496 

1.832608 

λ = 4 GCV 

GML 

PSM(k=1) 

UBR 

0.873763 

1.341634 

1.686857 

1.259853 

1.437364 

2.147087 

1.794844 

2.014616 

2.188967 

2.716225 

1.483121 

2.549091 

 0.106479 

1.296255 

1.2739570

1.221922 

2.800442 

2.050446 

1.659382 

1.578077 

1.430831 

1.895078 

1.159813 

2.412688 

 0.956241 

0.916018 

1.104291 

0.715468 

0.204817 

0.482256 

1.454671 

0.387835 

1.404276 

1.139858 

1.259721 

1.540203 

 

 
                       (a)                                         (b)                                        (c)                                           (d) 

Figure 2: Plots of the  Observations (. . .) and Estimates (---) With Smoothing Parameters Chosen by GCV (a), GML (b), PSM (c),and UBR (d) for n = 
60 
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                     (a)                                         (b)                                             (c)                                     (d) 
Figure 3: Plots of the  Observations (. . .) and Estimates (---) With Smoothing Parameters Chosen by GCV (a), GML (b), PSM (c),and UBR (d) for n = 
100 

 

 
Figure 4: The plot of the GML, GCV, PSM and UBR of the MSE of the simulated study in the presence of autocorrelation when σ = 1, ρ = 0.2 and n = 
20 

 

 

Figure 5: The plot of the GML, GCV, PSM and UBR of the MSE of the simulated study in the presence of autocorrelation when σ = 1, ρ = 0.2 and n = 
60 
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Figure 6: The plot of the GML, GCV, PSM and UBR of the MSE of the simulated study in the presence of autocorrelation when σ = 1, ρ = 0.2 and n = 
100 
 

Figures 1 and 5 presents the predictive mean square error 
estimates of GCV, GML, PSM and in 1000 replications. 
From these plots we can see that the PSM and UBR 
estimates have small PSMEs compare with GCV and 
GML. We conclude that all four methods estimate the 
smoothing parameters and the functions well but the PSM 
and UBR provide better estimates than GCV and GML in 
terms of mean-square error.  

The PSM method is more stable when the sample 
size is small, such as when N = 20 while UBR method 
performs slightly better when N = 60. In this case there 
were several replications where GCV and GML providing 
more estimates of smoothing parameters which lead to 
under smoothing of the data. This behavior of the GCV 
method was investigated in Wahba and Wang (1993) and 
Wang (1998). 
 

Table 3: Summary of the predictive mean square error and ranks of the smoothing 
methods in the presence of autocorrelation error 

Autocorrelation Smoothing method 

levels GCV GML PSM (k=1) UBR 

α = 0.2 
α = 0.5 
α = 0.8 

1.08 
1.89 
2.63 

1.39 
1.71 
1.99 

1.47 
1.66 
1.27 

1.63 
1.48 
2.09 

Grand mean 
Rank 

1.87 
4 

1.70 
2 

1.47 
1 

1.73 
3 

 
Table 4: Summary of the predictive mean square error and ranks of the smoothing 

methods based on sample size 

Sample Smoothing method 

size GCV GML PSM (k=1) UBR 

n = 20 
n = 60 

n = 100 

2.434 
2.041 
1.124 

2.179 
1.900 
1.047 

1.711 
1.549 
1.145 

2.326 
1.921 
0.951 

Grand mean 
Ranks 

1.867 
4 

1.709 
2 

1.468 
1 

1.732 
3 

 

V. DISCUSSION OF RESULT 

In this study, we presented Spline smoothing estimation 
method for time series observations in the presence of auto 
correlated errors and based on sample size. The result 

presented in tables 3 and 4 showed that all the smoothing 
methods compared and compete favorably in the presence 
of autocorrelation error and increase in sample size. The 
simulation result under the finite sampling properties of 
PMSE criterion shows that all estimators are consistent and 
adversely affected by auto correlated error the estimators’ 
ranks as follows, PSM, GML, UBR and GCV. The result 
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suggested that PSM should be preferred when 
autocorrelation level is mild and high (α = 0.5 – 0.8). If 
there is low autocorrelation in the observations, (i.e. α = 
0.2 – 0.5) the unbiased Risk (UBR) should be considered. 
It was observed that GCV and GML were mostly affected 
by the presence of auto correlation and therefore had an 
asymptotically similar behavioural pattern. 

It was also discovered that the estimators conformed to 
the asymptotic properties of the smoothing methods 
considered; this is noticed in all the sample sizes and at all 
the smoothing parameters. 
 

VI.           Conclusion 
 
The most consistent and efficient among the four spline 
smoothing methods considered in this study based on 
sample size and performance in the presence of 
autocorrelation error is the proposed smoothing method 
(PSM) because it does not undersmooth relative to the 
other smoothing method especially for small sample size 
i.e. n = 20 and 60.(see figure 1 and 2). The result of this 
experiment with n = 20 and n = 60 is in slight agreement 
with the monte-carlo results from Barry (1983) and Wahba 
(1985).  

It is also noticed that the predictive mean square error 
of the proposed smoothing method (PSM) goes to zero at a 
faster rate in the presence of autocorrelation error than the 
PMSE of the other smoothing methods considered in this 
study (see tables 3 and 4). The next in terms of 
performance, consistency and efficiency in the presence of 
autocorrelation is Generalized Maximum Likelihood 
(GML), Unbiased Risk (UBR) and the least in is 
Generalized Cross-Validation (GCV). 
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