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Abstract — In this paper, Bayes estimators of the 
unknown two parameters of the Transmuted Inverse 
Rayleigh Distribution (TIRD) have been derived using 
both the frequentist and bayesian methods. The Bayes 
theorem was adopted to obtain the posterior 
distribution of the parameters of TIRD using both the 
conjugate and non-conjugate prior distributions under 
different loss functions. The posterior distributions 
derived for the parameters are intractable and a 
Lindley approximation was adopted to obtain the 
parameters of interest. The loss functions were 
employed to obtain the estimates for the parameters 
with an assumption that the parameters are unknown 
and independent. The Bayes estimates obtained under 
different loss functions are close to the true parameter 
value of the shape and scale parameters. The estimators 
are then compared in terms of their Mean Square 
Error (MSE). We deduce that the MSE reduces as the 
sample size (n) increases. All analysis were performed 
with R statistical software. 

Keywords: Inverse Rayleigh Distribution, Transmutation Map, 
Hazard Rate Function, Reliability Function, Order Statistics, 
Parameter Estimation.   

i. Introduction 

The Inverse Rayleigh distribution has many applications in 
the area of reliability studies. Voda (1972) mentioned that 

the distribution of lifetimes of several types of 
experimental units can be approximated by the inverse 
Rayleigh distribution. Ahmad et al (2014), uses 
transmutation map approach suggested by Shaw and 
Buckley (2007) to define a new model which generalizes 
the Inverse Rayleigh model. Many authors have studied the 
transmuted distribution of many distribution. Aryal and 
Tsokos (2009, 2011) proposed the transmuted extreme 
distributions. Merovci (2013) derived the transmuted 
Rayleigh distribution.  

Ashouret and Eltehiwy (2013) derived the transmuted 
exponentiated Lomax distribution. Ahmad et al (2014), 
proposed the transmuted Inverse Rayleigh distribution.  
The  probability density distribution (PDF) of transmuted 
inverse Rayleigh distribution is expressed  as  

𝑓(𝑥; 𝜃, 𝜆) = 𝑒 1 + 𝜆 − 𝜆𝑒  (1) 

 and its cumulative density function (CDF) is given as;  

𝐹(𝑥; 𝜃, 𝜆) = 𝑒 1 + 𝜆 − 𝜆𝑒  (2) 

 where 𝜃 is a scale parameter and 𝜆 is a transmutted 
parameter.   The Inverse Rayleigh distribution is clearly a 
special case for 𝜆 = 0 . Figure 1 illustrates some of the 
possible shapes of the pdf of a transmuted inverse Rayleigh 
distribution for selected values of the parameters 𝜃 and λ.
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Figure 1: The cdf's of various transmuted inverse Rayleigh distributions 

 
 
 
 

Figure 2: The pdf's of various transmuted inverse Rayleigh distributions 
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II. METHODOLOGY 

A.  Maximum Likelihood Method 

Let x = (𝑥 , 𝑥 , … , 𝑥 ) be a random variable drawn from 
TIRD with size n. The likelihood function for the given 
random sample can be expressed as 

 

𝐿 =
( )

∏
𝑒

∑
∏ 1 + 𝜆 − 𝜆𝑒  (3) 

 The log-likelihood function of (3) is  

log𝐿 = 𝑛log2 + 𝑛log𝜃 − ∑ log𝑥 − ∑ +

∑ log 1 + 𝜆 − 𝜆𝑒  (4) 

 
 Therefore, MLE’s of 𝜃 and 𝜆 which maximizes (4) must 
satisfy the following normal equations         

= − ∑ + ∑  (5) 

  

= ∑  (6) 

 The MLE of 𝜃 and 𝜆 is obtained by solving this nonlinear 
system of equations. It is usually more convenient to use 
nonlinear optimization algorithms. In this study we are 
adopting the Newton Raphson Approach.    

 

B. Bayesian Analysis 

In the estimation of TIRD parameters under Bayesian 
method, three types of loss function were considered. The 
first is LINEX loss function (LLF) which is also known as 
linear-exponential loss function which is asymmetric.  
Varian (1975) introduced the LLF.  The Entropy loss 
function (ELF) was also introduced by Calabria & Pulcini 
(1994). The third loss function is the scale invariant 
squared error loss function (SISLF) which was introduced 
by DeGroot (1970) and it is also known as De-Groot loss 
function.  

C.  Linex Loss Function  

𝜃 = − ln 𝐸 𝑒  (7) 

 provided that 𝐸 𝑒  exits. 

D. Entropy Loss Function   

The Bayes estimator of the ELF is the value 𝜃 and can be 
expressed as  

𝜃 = [𝐸(𝜃 )]  (8) 

E.  Scale invariant squared error loss function   

The Bayes estimate using SISLF is given by  

𝜃 =  (9) 

. 

F.  Posterior Distribution 

Let x = (x1, x2, ,…,xn) be a random variable with 
parameters ϴ and λ, having size n. from the bayes’ the 
posterior probability density function of the parameters ϴ 
and λ given x can be expressed as 

   

Pr(𝜃, 𝜆|𝑥) ∝
( , | ) ( , )

∫ ∫ ( , | ) ( , )
 (10) 

Where   𝐿(𝜃, 𝜆|𝑥) is the likelihood and 𝜋(𝜃, 𝜆) is the prior 
probability distrbution 
We adopted conjugate prior distribution for parameter 
𝜃~ 𝐺(𝑎, 𝑏) and a non-conjugare prior for 𝜆 ~ 𝑈(0, 𝜆)  

𝜋(𝜃, 𝜆) =
( )

𝜃 𝑒         𝑎 > 0, 𝑏 > 0, 𝜆 > 0, 𝜃 > 0 (11) 

 To obtain the posterior distribution, we substitute the 
likelihood (3) and prior distribution (11) into (10) to obtain 
the posterior distribution.  

Pr(𝜃, 𝜆|𝑥) ∝

( )

∏

∑
∏

( )

∫ ∫
( )

∏

∑
∏

( )

 (12) 

     

G.  Lindley’s Approximation 

It’s noted that the posterior distribution (12) takes a ratio 
form that involves an integration in the denominator and 
that the denominator can’t be reduced to a closed form. 
Thus to estimate the posterior distribution (12) will be 
difficult. In other to estimate the posterior distribution we 
will adopt the Lindley’s approximation suggested by 
Lindley(1980) which treats the ratio of the integrals as a 
whole which results to a single numerical result. In this 
work, we compute 𝐸(𝜃 |𝑥) and 𝐸(𝜃 |𝑥) in order to find 
the variance estimates given by  
𝑉𝑎𝑟(𝜃 |𝑥) = 𝐸(𝜃 |𝑥) − (𝐸(𝜃 |𝑥))         𝑖 = 1,2 (13) 
 where 𝜃 = 𝜃 and 𝜃 = 𝜆. If n is sufficiently large, 
according to Lindley(1980), any ratio of the integral of the 
form  

𝐼(𝑥) = 𝐸[𝑢(𝜃, 𝜆)] =
∫ ∫ ( , ) ( , ) ( , )

∫ ∫ ( , ) ( , )  (14) 

   
where 𝑢(𝜃, 𝜆) is a function of 𝜃 and 𝜆 only, 𝑙(𝜃, 𝜆) is the 
log-likelihood and 𝜌(𝜃, 𝜆) is the log of the prior 
distribution 𝜋(𝜃, 𝜆). Thus, for the unknown parameter 𝜃, 
the Lindley’s approximation is  
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𝐸[𝑢(𝜃, 𝜆)|𝑥 = 𝑢(𝜃, 𝜆) + (𝑢 𝜙 ) + 𝜌 𝑢 𝜙 +

(𝐿 𝑢 𝜙 ) + (𝐿 𝑢 𝜙 𝜙 ) (15) 

 where 𝑢(𝜃, 𝜆) =   

Also, for the unknown parameter 𝜆, the Lindley’s 
approximation is  

𝐸[𝑢(𝜃, 𝜆)|𝑥 = 𝑢(𝜃, 𝜆) + (𝑢 𝜙 ) +

𝜌 𝑢 𝜙 + (𝐿 𝑢 𝜙 ) + (𝐿 𝑢 𝜙 𝜙 ) (16) 

 where 𝑢(𝜃, 𝜆) =      

All the quantities in the above expression of I(x) have the 
following representations: 

 

𝐿 =
𝜕 𝑙(𝜃, 𝜆)

𝜕𝜃 𝜕𝜆
        𝑖, 𝑗 = 0,1,2,3 

 

= − − ∑ −

∑

⎣
⎢
⎢
⎡

⎦
⎥
⎥
⎤

 (17) 

  

= − ∑

⎣
⎢
⎢
⎡

⎦
⎥
⎥
⎤

 (18) 

  

= ∑ −

∑

⎣
⎢
⎢
⎡

⎦
⎥
⎥
⎤

 (19) 

= ∑

⎣
⎢
⎢
⎡

⎦
⎥
⎥
⎤

 (20) 

  
 

𝜕 𝑙

𝜕𝜃
=

2𝑛

𝜃
+

2𝜆e

𝑥 1 + 𝜆 − 2𝜆e

+  

⎣
⎢
⎢
⎢
⎡ 12𝜆 e

𝑥 1 + 𝜆 − 2𝜆e ⎦
⎥
⎥
⎥
⎤

 

+ ∑

⎣
⎢
⎢
⎡

⎦
⎥
⎥
⎤

     (21)                                     

  

    = − ∑

⎣
⎢
⎢
⎡

⎦
⎥
⎥
⎤

+

∑

⎣
⎢
⎢
⎡

⎦
⎥
⎥
⎤

 (22) 

  

= − ∑ −

∑

⎣
⎢
⎢
⎡

⎦
⎥
⎥
⎤

+     

∑

⎣
⎢
⎢
⎡

⎦
⎥
⎥
⎤

+ ∑

⎣
⎢
⎢
⎡

⎦
⎥
⎥
⎤

   (23) 

     
 

𝜙 = −
1

𝐿
 

and 
 

𝜙 = −
1

𝐿02
 

 
𝜌 = log𝜋(𝜃, 𝜆) = 𝑎log𝑏 − log𝜆 − logΓ(𝑎) + (𝑎 − 1)log𝜃

− 𝑏𝜃 
 

𝜌 =
𝜕𝜌

𝜕𝜃
=

𝑎 − 1

𝜃
− 𝑏 

 

𝜌 =
𝜕𝜌

𝜕𝜆
= −

1

𝜆
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The values of the Bayes estimates of parameters 𝜎 and 𝛼 
can now be obtained. 

H.  Case of the LINEX loss function (LLF)   

   1.  For the parameter 𝜎, let 𝑢(𝜎, 𝛼) = 𝑒  then 
𝑢 = −𝑘𝑒  and 𝑢 = 𝑘 𝑒 , 𝑢 = 𝑢 = 0  

𝜎 = − 𝑒 + 𝑢 𝜙 + 𝜌 𝑢 𝜙 +

𝐿 𝑢 𝜙 + 𝐿 𝑢 𝜙 𝜙  (24) 

   
2.  For the parameter 𝛼, let 𝑢(𝜎, 𝛼) = 𝑒  then 𝑢 =

−𝑘𝑒  and 𝑢 = 𝑘 𝑒 , 𝑢 = 𝑢 = 0 
 

𝛼 = − 𝑒 + 𝑢 𝜙 + 𝜌 𝑢 𝜙 +

𝐿 𝑢 𝜙 + 𝐿 𝑢 𝜙 𝜙  (25) 

  

I. Case of the Entropy loss function (ELF) 

  

    1.  For the parameter 𝜎, let 𝑢(𝜎, 𝛼) =  then 

𝑢 = −  and 𝑢 = , 𝑢 = 𝑢 = 0  

𝜎 = + 𝑢 𝜙 + 𝜌 𝑢 𝜙 + 𝐿 𝑢 𝜙 +

𝐿 𝑢 𝜙 𝜙  (26) 

  

    2.  For the parameter 𝛼, let 𝑢(𝜎, 𝛼) =  then 

𝑢 = −  and 𝑢 = , 𝑢 = 𝑢 = 0  

𝛼 = + 𝑢 𝜙 + 𝜌 𝑢 𝜙 + 𝐿 𝑢 𝜙 +

𝐿 𝑢 𝜙 𝜙  (27) 

  

J. Case of the scale invariant squared error loss 
function (SISLF) 

  

    1.  For the parameter 𝜎, let 𝑢(𝜎, 𝛼) =  then 

𝑢 = −  and 𝑢 = , 𝑢 = 𝑢 = 0 and also let 

𝑢∗(𝜎, 𝛼) =  then 𝑢∗ = −  and 𝑢∗ = , 𝑢∗ = 𝑢∗ = 0  

𝜎 =
∗ ∗ ∗ ∗

 (28) 

  

    2.  For the parameter 𝛼, Let 𝑢∗(𝜎, 𝛼) =  then 

𝑢∗ = −  and 𝑢∗ = , 𝑢∗ = 𝑢∗ = 0 and also let 

𝑢(𝜎, 𝛼) =  then 𝑢 = −  and 𝑢 = , 𝑢 = 𝑢 = 0  

𝛼 =
∗ ∗ ∗ ∗

 (29) 

 

III. APPLICATIONS 

In this section, we simulated a random sample of sizes n = 
30, 50, 100, 200 and 500 from TIR distribution with 
parameters ϴ =0.5, 0.8 and 1.0, λ = -0.5, 0.5 and 1.0. The 
results are replicated 1,000 times and the average result 
were presented in the tables. The estimate and mean square 
error (MSE) values obtained by the method of MLE, LLF, 
ELF and SISLF are shown in Tables 1. 
       Based on the results in Table 1, we can deduced that 
that the obtained estimated for oboth clasical and bayesian 
methods are close to the predefined values. Aso, we 
observed that as n increases the MSE increases. 
Futhermore, we deduced that  the Bayesian estimates of the 
scale and transmutted parameters under the Bayesian 
method performs better than that of the classical techniques 
because the have the small MSE . Finally, among 
theBayesian estimates, LLF seems to have have the best 
estimates because it has the smallest MSE among other 
Bayes estimates. 
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Table 1. Estimates of the parameters of the Four methods: MLE, LLF, ELF AND SISLF with their MSE with different 
parameter values 

n Parameter MLE LLF ELF SISLF 
20 ϴ   ϴ   ϴ   ϴ   ϴ     

1 
 a = 1.3 
b = 1 
k = 2 

0.5 0.4757 
(0.1810) 

0.3274 
(0.7424) 

0.5086 
(0.0075) 

0.1285 
(0.2653) 

0.4941 
(0.0076) 

0.2028 
(0.2019) 

0.4757 
(0.0081) 

0.2501 
(0.1948) 

 

0.5 
 a = 1.3 
  b = 1 

 k = 0.5 

-0.5 0.6624 
(0.7466) 

-0.4893 
1.6635 

0.6460 
(0.0223) 

-0.1586 
(0.1170) 

0.6037 
(0.0116) 

-0.2200 
(0.0784) 

0.5733 
(0.0062) 

-0.2682 
0.0537 

0.8 
  a = 1 

 b = 0.5 
k = 0.5 

1 1.1248 
(0.2214) 

1.3565 
0.3165 

1.2161 
0.1731 

1.0719 
0.0052 

1.2031 
(0.1625) 

1.0905 
(0.0082) 

1.1820 
(0.1459) 

1.2758 
(0.0761) 

0.5 
a = 1.5 
  b = 1 
  k = 1 

0.5 0.6263 
(0.1739) 

0.5889 
(0.5359) 

0.5024 
(0.0229) 

0.0582 
(0.2694) 

0.4877 
(0.0225) 

0.1480 
(0.1894) 

0.4687 
(0.0219) 

0.1923 
(0.0225) 

50 1 
 a = 1.3 
b = 1 
k = 2 

0.5 0.5215 
(0.0879) 

0.4738 
(0.3025) 

0.5595 
(0.0113) 

0.6825 
(0.1817) 

0.5548 
(0.0109) 

0.6823 
(0.1809) 

0.5484 
(0.0104) 

0.7160 
(0.2100) 

0.5 
 a = 1.3 
  b = 1 

 k = 0.5 

0.5 0.4719 
(0.18160 

-0.3581 
(0.57970 

0.7022 
(0.09100 

0.0096 
(0.2994) 

0.6870 
(0.0837) 

0.0078 
(0.2977) 

0.6748 
(0.0784) 

0.0140 
(0.3145) 

0.8 
 a = 1     b 

= 0.5 
k = 0.5 

1 0.9651 
(0.1197) 

1.4699 
(0.2036) 

1.0037 
(0.0415) 

1.3466 
(0.1201) 

0.9995 
(0.0398) 

1.3462 
(0.1199) 

0.9936 
(0.0375) 

1.4445 
(0.1976) 

0.5 
 a = 1.5 
  b = 1 
  k = 1 

0.5 0.5117 
(0.0818) 

0.7732 
(0.3118) 

0.5213 
(0.0015) 

0.2127 
(0.2503) 

0.5153 
(0.0014) 

0.3143 
(0.1154) 

0.5075 
(0.0012) 

0.3390 
(0.0990) 

100 1 
 a = 1.3 
b = 1 
k = 2 

0.5 0.5610 
(0.0531) 

0.9195 
(0.1592) 

0.5011 
(0.0026) 

0.4651 
(0.0635) 

0.4984 
(0.0026) 

0.4568 
(0.0637) 

0.4947 
(0.0026) 

0.4608 
(0.0615) 

0.5 
 a = 1.3 
  b = 1 

 k = 0.5 

0.5 0.6789 
(0.0983) 

0.2466 
(0.2590) 

0.5692 
(0.0178) 

-0.2272 
(0.1950) 

0.5627 
(0.0169) 

-0.2168 
(0.1964) 

0.5572 
(0.0162) 

-0.2007 
(0.2092) 

0.8 
  a = 1 

 b = 0.5 
k = 0.5 

1 0.8531 
(0.0707) 

1.1627 
(0.1061) 

0.8656 
(0.0043) 

1.0970 
(0.0094) 

0.8624 
(0.0039) 

1.0953 
(0.0091) 

0.8583 
(0.0034) 

1.1209 
(0.0146) 

0.5 
a = 1.5 
 b = 1 
 k = 1 

0.5 0.5078 
(0.0548) 

0.6982 
(0.1969) 

0.5134 
(0.0017) 

0.3400 
(0.0745) 

0.5105 
(0.0017) 

0.3725 
(0.0643) 

0.5066 
(0.0016) 

0.3807 
(0.0569) 
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n 
Parameter MLE LLF ELF SISLF 
ϴ   ϴ   ϴ   ϴ   ϴ     

200 1 
 a = 1.3 
b = 1 
k = 2 

0.5 0.5158 
(0.0447) 

0.5298 
(0.1620) 

0.4958 
(0.0012) 

0.4894 
(0.0177) 

0.4945 
(0.0012) 

0.4581 
(0.0188) 

0.4926 
(0.0012) 

0.4734 
(0.0187) 

0.5 
 a = 1.3 
 b = 1 

 k = 0.5 

0.5 0.5397 
(0.1080) 

-0.4244 
(0.2919) 

0.6120 
(0.0175) 

-0.2816 
(0.0587) 

0.6083 
(0.0167) 

-0.1802 
(0.1377) 

 

0.6051 
(0.0160) 

-0.1634 
(0.1499) 

0.8 
 a = 1 

 b = 0.5 
k = 0.5 

1 0.7469 
(0.0439) 

0.9949 
(0.0735) 

0.7500 
(0.0025) 

0.9578 
(0.0018) 

0.7483 
(0.0027) 

0.9559 
(0.0019) 

0.7463 
(0.0029) 

0.9601 
(0.0016) 

0.5 
 a = 1.5 
 b = 1 
 k = 1 

0.5 0.4842 
(0.0453) 

0.3421 
(0.1677) 

0.4878 
(0.0017) 

0.3691 
(0.0568) 

0.4864 
(0.0017) 

0.3603 
(0.0580) 

0.4845 
(0.0018) 

0.3595 
(0.0561) 

500 1 
 a = 1.3 
b = 1 
k = 2 

0.5 0.5412 
(0.0243) 

0.7416 
(0.0776) 

0.5179 
(0.0012) 

0.5334 
(0.0194) 

0.5173 
(0.0011) 

0.5275 
(0.0197) 

0.5166 
(0.0011) 

0.5232 
(0.0199) 

 0.5 
 a = 1.3 
 b = 1 

 k = 0.5 

0.5 0.5523 
(0.0806) 

-0.2435 
(0.2353) 

0.5069 
(0.0022) 

-0.4261 
(0.0487) 

0.5056 
(0.0021) 

-0.4163 
(0.0523) 

 

0.5044 
(0.0021) 

-0.4094 
(0.0544) 

 0.8 
 a = 1 

 b = 0.5 
k = 0.5 

1 0.8382 
(0.0302) 

1.0262 
(0.0388) 

0.8398 
(0.0016) 

1.0000 
(0.0000) 

0.8391 
(0.0015) 

1.0000 
(0.0000) 

0.8282 
(0.0015) 

1.0116 
(0.0001) 

 0.5 
 a = 1.5 
 b = 1 
 k = 1 

0.5 0.4759 
(0.0261) 

0.4902 
(0.1011) 

0.4883 
(0.0002) 

0.4950 
(0.0024) 

0.4878 
(0.0002) 

0.4886 
(0.0025) 

0.4870 
(0.0003) 

0.4838 
(0.0027) 

 

IV. CONCLUSION 

In this work, both classical and bayesian estimation of TIR 
distribution was adopted to estimate the parameters of TIR 
distribution using different loss functions such as Entropy 
Loss Function, Linex Loss Function, Scale Invariant 
Squared Error Loss Function. Fig. 1-2 shows that the PDF 
and CDF of the TIR distribution at varying parameter 
values which shows that the distribution is positively 
skewed. Tables 1 shows the posterior estimates with MSE 
for different prior distribution under different loss 
functions for the simulated datasets. Based on the results 
displayed in Tables 1, we observed that all the posterior 
estimates for both parameters are close to the true values of 
parameters of TIR distribution. Also, we discovered  the 
methods are consistent since the values of MSE decrease  
 

 
 
as sample size increases. It can be observed that the 
Bayesian estimates of the scale and transmutted parameters  
under the Bayesian techniques perform better than that of 
the classical techniques. 
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