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Abstract — Regression analysis provides us with useful 
aid in the prediction of models; it examines and also 
explores relationships between variables. In this paper, the 
student's Grade Point Average (GPA) in Computer Science 
Department, Federal Polytechnic, Ekowe at the end of 
2017/2018 first academic section which is the response 
(dependent) variable was regressed on four predictive 
(independent) variables namely: Chemistry, Mathematics, 
English, and Physics. The predictive variables are the Joint 
Admissions and Matriculation Board (JAMB) subjects 
offered by the respective students of the Computer Science 
department that were given provisional admission into the 
department. The forward, backward elimination, and 
stepwise selection procedures were used in selecting the 
best predictor variable subsets. It was observed from the 
results that the same subsets of predictor variables were 
selected for both forward and stepwise selection 
procedures. It is also seen that not all the linear functions 
of the unknown parameters 𝛽ଵ, … , 𝛽ସ are zero meaning that 
the explanatory variables have a significant influence on 
the dependent variable. 

Keywords: Multiple regression; Dependent variable; 
Predictor variables; Linear function; Sum of squares. 

I. Introduction 

Multiple regression analysis is a statistical process for 
estimating the relationships between a dependent 
(response) variable 𝑌 and two or more independent 
(predictor) variables 𝑋ଵ, 𝑋ଶ, … , 𝑋 which is widely used for 
prediction and forecasting purposes. Notably, Bowerman 
and O’Connell (1997) added that we can more accurately 
describe, predict and control a dependent variable by using 
a regression model that employs more than one 

independent variable. The linear multiple regression 
models relating 𝑌 to 𝑋ଵ, 𝑋ଶ, … , 𝑋 is given as 

𝑌 = 𝛽 + 𝛽ଵ𝑋ଵ + ⋯ + 𝛽𝑋 + 𝜀                          (1) 

Then the deterministic component of the multiple 
regressions in Equation (1) will be 

𝐸(𝑌) = 𝜇௬ భ,మ,…,ೖ⁄ = 𝛽 + 𝛽ଵ𝑋ଵ + ⋯ + 𝛽𝑋   (2) 

This is the mean value of the dependent variable 𝑌 when 
the values of the independent variables are 𝑋ଵ, 𝑋ଶ, … , 𝑋, 
where linearity implies that 𝐸(𝑌) is a linear function of the 
unknown parameters 𝛽, 𝛽ଵ, … , 𝛽 that has to be estimated 
using sample data. 𝜀 is an error term that describes the 
effect on 𝑌 of all factors other than the values of the 
independent variables 𝑋ଵ, 𝑋ଶ, … , 𝑋. 
     The purpose of this paper is to carry out a multiple 
regression analysis of students’ performance using variable 
selection procedures. The process of examining subset 
models and selecting one or more suitable prediction 
functions is often called the selection of variables (subset 
selection or subset analysis). The variable selection 
procedures that will be used are forward selection 
procedure, backward elimination procedure, and stepwise 
procedure rather than all-subset regression procedure 
considering the fact that it may not be the best function for 
predicting 𝑌 using 𝑋ଵ, 𝑋ଶ, … , 𝑋 , but it may be an adequate 
prediction function for the problem (Graybill and Iyer, 
1999), especially when there are k predictor variables in 
all, the number of possible subset prediction functions of 
the form 𝛽 + 𝛽ଵ𝑋ଵ + ⋯ + 𝛽𝑋 is 2 where 
(𝑋ଵ, 𝑋ଶ, … , 𝑋) is a subset of (𝑋ଵ, 𝑋ଶ, … , 𝑋).  

    The rest of the paper is organized as follows: 
Section 2 discusses the methodology of the variable 
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selection procedures. Furthermore, Section 3 describes the 
model selection criteria which are geared in selecting the 
best subset of predictions. While Section 4 shows the 
experimental results and discussion. Finally, Section 5 is 
the conclusion of the paper. 

.  

II. Methodology 

The methodology of the variable selection procedures to be 
discussed is forward selection procedure, backward 
elimination procedure and stepwise selection procedure. 

2.1   Forward selection procedure 

      This method starts with the simplest function 𝛽, and 
successively one variable is added to the model at a time in 
such a way that at each step the variable added is the best 
variable that can be added. For instance, describing the 
forward selection procedure (algorithm) using 𝑘 = 4, that 
is, the total number of predictors under consideration is 
four which is denoted as 𝑋ଵ, … , 𝑋ସ. At each step of the 
procedure, we will have a current model as the best 
candidate variable for adding to that model depending on 
any model selection criterion measure like Mean Square 
Error(𝑠), Multiple Coefficient of Determination (𝑅ଶ), 
Adjusted Multiple Coefficient of Determination (𝑅തଶ) and 
Mallow’s 𝐶 Criterion can be used, and each measure will 
select the same best candidate variable. Whether or not the 
variable added is actually added to the current model 
depends on whether a computed quantity denoted by 𝐹 
exceeds a criterion value which is denoted by F-in. The 
researcher chooses this criterion value to somewhat 
corresponding to a tabled F-Value with 1 degree of 
freedom in the numerator and 𝑛 − (𝑝 + 1) degree of 
freedom in the denominator, where (𝑝 + 1 stands for the 
number of 𝛽ଵ in the model under consideration). This 
criterion value F-in is differently denoted in different 
statistical software packages. MINITAB uses the name 
𝐅 𝐭𝐨 𝐞𝐧𝐭𝐞𝐫  to refer to the criterion value F-in. Since the 
function begins with 𝛽, 
First step: for each predictor variable 𝑋 , (𝑖 = 1, … ,4) fit 
the model 𝛽 + 𝛽ଵ𝑋ଵ, using least squares we 
obtain 𝑆𝑆𝐸(𝑋), that is, the sum of squared errors using 
𝛽መ + 𝛽መ𝑋 to predict 𝑌. Choose the variable 𝑋 that will 
result in the smallest value for 𝑆𝑆𝐸(𝑋) as the best 
candidate variable to be added the current model. Now 

𝐹 =
ௌௌିௌௌா(భ)

ெௌா(భ)
 where 𝑀𝑆𝐸(𝑋ଵ) =

ௌௌா(భ)

(ିଶ)
 and 𝑆𝑆𝑌 is the 

total sum of squares of the dependent variable 𝑆𝑆𝑇. If 
𝐹 ≤ 𝐹-𝑖𝑛, then the algorithm stops and the original model 
𝐵 is the final model. If 𝐹 > 𝐹-𝑖𝑛, then add 𝑋 to the 
current model which makes it  

𝛽 + 𝛽ଵ𝑋ଵ                                                                    (3) 

Second step: the current model is 𝛽 + 𝛽ଵ𝑋ଵ. The predictor 
variables that are not in this step are 𝑋ଶ, 𝑋ଷ and 𝑋ସ, for 
𝑖 = 2,3,4. At this point we fit the model 𝛽 + 𝛽ଵ𝑋ଵ + 𝛽ଶ𝑋ଶ 
and obtain 𝑆𝑆𝐸(𝑋ଵ, 𝑋). Choose the variable 𝑋 that result 
in the smallest value for 𝑆𝑆𝐸(𝑋ଵ, 𝑋) as the best variable to 
be added to the current model. Assume that the variable 

is 𝑋ଶ  then we calculate 𝐹 =
ௌௌா(భ)ିௌௌ (భ,మ)

ெௌா(భ,మ)
 where 

𝑀𝑆𝐸(𝑋ଵ, 𝑋ଶ) = 𝑆𝑆𝐸(𝑋ଵ, 𝑋ଶ) (𝑛 − 3)⁄  like before, if 
𝐹 ≤ 𝐹-𝑖𝑛 the algorithm stops and we choose the model in 
Equation (3) as the final model, but if 𝐹 > 𝐹-𝑖𝑛 then add 
𝑋ଶ to the current model which makes it 𝛽 + 𝛽ଵ𝑋ଵ + 𝛽ଶ𝑋ଶ. 
This process continue until all the predictor variables are 
already included in the current model, which implies that 
there is no need to proceed further and the algorithm stops. 
In this case at the fourth step the final model becomes 

𝛽 + 𝛽ଵ𝑋ଵ + 𝛽ଶ𝑋ଶ + 𝛽ଷ𝑋ଷ + 𝛽ସ𝑋ସ                            (4) 

2.2   Backward elimination procedure 

     This method begins with the present of a constant 
model 𝛽 with that which includes all of the available 
predictor variables, that is, 𝛽 + 𝛽ଵ𝑋ଵ + ⋯ + 𝛽𝑋 which 
proceed by successively eliminating one variable at a time 
from the model, such that in every step the variable 
removed is the variable contributing the least to the 
prediction of 𝑌 at that step. At each step of the algorithm, 
we will have a current model and will also label a predictor 
variable included in the current model as the best variable 
for deletion from the model. Whether or not this variable is 
deleted from the current model depends on whether 
quantity computed which is denoted by 𝐹 is smaller than a 
criterion value that we call 𝐹-𝑜𝑢𝑡. The model begins with  
𝛽 + 𝛽ଵ𝑋ଵ + ⋯ + 𝛽ସ𝑋ସ                                                       (5)  
as the current model. The model is fitted using the least 
square method and calculate 𝑆𝑆𝐸(𝑋ଵ, … , 𝑋ସ) using 
𝛽መ + 𝛽መଵ𝑋ଵ + ⋯ + 𝛽መସ𝑋ସ  to predict 𝑌. 
First Step: 𝑋ଵ, 𝑋ଶ, 𝑋ଷ and 𝑋ସ are available in the model of 
this step. For each predictor variable 𝑋 , 𝑖 = 1, … ,4, fit the 
model obtained by deleting this prediction variable from 
the current model and calculate the corresponding 𝑆𝑆𝐸 
leading us to consider the following from the models 
because 𝑘 = 4.         
𝛽 + 𝛽ଵ𝑋ଵ + 𝛽ଶ𝑋ଶ + 𝛽ଷ𝑋ଷ  𝐸𝑛𝑡𝑎𝑖𝑙𝑠 𝑡ℎ𝑎𝑡 𝑋ସ 𝑖𝑠 𝑜𝑚𝑖𝑡𝑡𝑒𝑑                              
𝛽 + 𝛽ଵ𝑋ଵ + 𝛽ଶ𝑋ଶ + 𝛽ସ𝑋ସ  𝐸𝑛𝑡𝑎𝑖𝑙𝑠 𝑡ℎ𝑎𝑡 𝑋ଷ 𝑖𝑠 𝑜𝑚𝑖𝑡𝑡𝑒𝑑                            
𝛽 + 𝛽ଵ𝑋ଵ + 𝛽ଷ𝑋ଷ + 𝛽ସ𝑋ସ 𝐸𝑛𝑡𝑎𝑖𝑙𝑠 𝑡ℎ𝑎𝑡 𝑋ଶ 𝑖𝑠 𝑜𝑚𝑖𝑡𝑡𝑒𝑑                          
𝛽 + 𝛽ଶ𝑋ଶ + 𝛽ଷ𝑋ଷ + 𝛽ସ𝑋ସ 𝐸𝑛𝑡𝑎𝑖𝑙𝑠 𝑡ℎ𝑎𝑡 𝑋ଵ 𝑖𝑠 𝑜𝑚𝑖𝑡𝑡𝑒𝑑 
and the corresponding sums of squares error are 
𝑆𝑆𝐸(𝑋ଵ, 𝑋ଶ, 𝑋ଷ), 𝑆𝑆𝐸(𝑋ଵ, 𝑋ଶ, 𝑋ସ), 𝑆𝑆𝐸(𝑋ଵ, 𝑋ଷ, 𝑋ସ),
𝑆𝑆𝐸(𝑋ଶ, 𝑋ଷ, 𝑋ସ) respectively, suppose the first 𝑆𝑆𝐸 is the 
smallest amongst them, that is, 𝑆𝑆𝐸(𝑋ଵ, 𝑋ଶ, 𝑋ଷ) it implies 
that if we want to delete one of the predictor variable in the 
current model, the best choice to variable to delete will be 
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𝑋ସ because the three remaining predictors 𝑋ଵ, 𝑋ଶ and 𝑋ଷ 
are the best predictor subset models of the current model. 
The computed quantity becomes 

𝐹 =
ௌௌா(భ,మ,య)ିௌௌா(భ,మ,య,ర)

ெௌா(భ,మ,య,ర)
                                     (6)  

where 𝑀𝑆𝐸(𝑋ଵ, … , 𝑋ସ) = 𝑆𝑆𝐸(𝑋ଵ, … , 𝑋ସ)/(𝑛 − 5), if 
𝐹 > 𝐹-𝑜𝑢𝑡, then the algorithm stops and the model in 
Equation (5) is chosen as the final model, which means 
that no variables are deleted in the first step and the 
variable in the model are 𝑋ଵ, … , 𝑋ସ, but if 𝐹 ≤ 𝐹-𝑜𝑢𝑡, then 
𝑋ସ is deleted from the current model. When 𝑋ସ is deleted 
from the first step, then 

𝛽, + 𝛽ଵ𝑋ଵ + ⋯ + 𝛽ଷ                                             (7) 
is the remaining model containing variables 𝑋ଵ, 𝑋ଶ, 𝑋ଷ. 
Second step: since Equation (7) is the current model for 
each predictor 𝑋 , 𝑖 = 1,2,3, fit the model obtained by 
deleting the predictor variable from the current model and 
calculates the corresponding 𝑆𝑆𝐸 that leads us to consider 
the following three models. 
𝛽, + 𝛽ଵ𝑋ଵ +  𝛽ଶ𝑋ଶ                𝐸𝑛𝑡𝑎𝑖𝑙𝑠 𝑡ℎ𝑎𝑡 𝑋ଷ 𝑖𝑠 𝑜𝑚𝑖𝑡𝑡𝑒𝑑     
𝛽 + 𝛽ଵ𝑋ଵ + 𝛽ଷ𝑋ଷ                𝐸𝑛𝑡𝑎𝑖𝑙𝑠 𝑡ℎ𝑎𝑡 𝑋ଶ 𝑖𝑠 𝑜𝑚𝑖𝑡𝑡𝑒𝑑             
𝛽 + 𝛽ଶ𝑋ଶ + 𝛽ଷ𝑋ଷ                𝐸𝑛𝑡𝑎𝑖𝑙𝑠 𝑡ℎ𝑎𝑡 𝑋ଵ 𝑖𝑠 𝑜𝑚𝑖𝑡𝑡𝑒𝑑     
The corresponding 𝑆𝑆𝐸 is 𝑆𝑆𝐸(𝑋ଵ, 𝑋ଶ), 𝑆𝑆𝐸(𝑋ଵ, 𝑋ଷ),
𝑆𝑆𝐸(𝑋ଶ, 𝑋ଷ)  respectively. Suppose the smallest amongst 
these 𝑆𝑆𝐸 is 𝑆𝑆𝐸(𝑋ଵ, 𝑋ଶ). We calculate 

𝐹 =
ௌௌா(భ,మ)ିௌௌா(భ,మ,య)

ெௌா(భ,మ,య)
                            (8)   

where 𝑀𝑆𝐸(𝑋ଵ, 𝑋ଶ, 𝑋ଷ) = 𝑆𝑆𝐸(𝑋ଵ, 𝑋ଶ, 𝑋ଷ)/(𝑛 − 4) if 
 𝐹 > 𝐹-𝑜𝑢𝑡, then the algorithm stops and Equation (7) is 
chosen as the final model. Otherwise, if 𝐹 ≤ 𝐹-𝑜𝑢𝑡, then 
delete 𝑋 from the current model. When 𝑋 is deleted in the 
second step, then 
𝛽 + 𝛽ଵ𝑋ଵ + 𝛽ଶ𝑋ଶ                                                            (9)   
Is the remaining model containing variables 𝑋ଵ and 𝑋ଶ. We 
continue till the fourth step where  𝑋ଵ is deleted and the 
procedure terminates. 

2.3   Stepwise selection procedure 

The stepwise selection procedure is the combination of the 
forward selection and the backward elimination procedure 
which allows re-examination at every step. Although, there 
are many versions of stepwise procedures but we will only 
discuss one in detail. The predictor variable is 𝑘 = 4,  then 
we start with an initial (current) model with no predictors 
𝛽 or the full model 𝛽 + 𝛽ଵ𝑋ଵ + ⋯ + 𝛽ସ𝑋ସ or any other 
subset model. The algorithm will proceed in two stages: 
      First stage, we start with the current model and perform 
the backward elimination procedure as many times as is 
necessary until no more variables can be deleted. If the 
current model is 𝛽, omit this stage and go to the second 
stage. 

      Second stage, we begin with the final model of the first 
stage and perform the forward selection procedure once, if 
a predictor variable is added to the current model, then go 
back to the first stage. If no predictor variable is added to 
the current model at this stage, then the procedure 
terminates because no variable can be added to the current 
model and no variable can be removed from the current 
model, in this case that current model is selected as the 
final model. 
 

III. Model selection criteria 

Many selection criteria for choosing the best have been 
proposed. These criteria are based on the principle of 
parsimony which suggests selecting a model with small 
residual sum of squares with as few parameters as possible. 
Hockings (1976) reviewed eight model selection criteria 
while Bendel and Afifi (1977) compared also eight criteria 
but not all the same as Hockings. A selection criterion is an 
index that can be computed for each candidate model and 
used to compare models (Kleinbaum et al. 1987). We shall 
consider four criteria: 𝑠, 𝑅ଶ, 𝑅തଶ, 𝐶. 
3.1   Mean square error (s) 
     The mean square error of an estimator (of a procedure 
for estimating an unobserved quantity) measures the 
average of the squares of the errors, that is, the average 
squared difference between the estimated values and the 
actual value. The MSE is a measure of the quantity of an 
estimator, it is always non-negative, and values closer to 
zero are better. The MSE is the second moment (about the 
origin) of the error, and thus incorporates both the variance 
of the estimator (how widely spread the estimates are from 
one data sample to another) and its bias (how far off the 
average estimated value is from the truth (Draper and 
Smith, 1987). 
 
3.2   Multiple coefficient of determination 

The multiple coefficient of determination 𝑅ଶ is the 
proportion of the total sum of squares of the dependent 
variables explained by the independent variables in the 
model  

𝑅ଶ =
𝑆𝑆𝑅

𝑆𝑆𝑌
=

𝑆𝑆𝑌 − 𝑆𝑆𝐸

𝑆𝑆𝑌

= 1 −
𝑆𝑆𝐸

𝑆𝑆𝑌
                                                 (10)      

The objective is to select a model that accounts for as 
much of the variation in 𝑌. Observe that in the above 
Equation (10), 𝑆𝑆𝑌 is the same as 𝑆𝑆𝑇, the use of the 𝑅ଶ 
criterion for models building requires a judgment as to 
whether the increase in 𝑅ଶ from additional variables 
justifies the increased complexity of the model (Rawlings 
et al., 1998). 
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3.3   Adjusted multiple coefficient of determination 

     The adjusted 𝑅ଶ denoted as 𝑎𝑑𝑗. 𝑅ଶ or 𝑅തଶ is a rescaling 
of 𝑅ଶ by degree of freedom so that it involves a ratio of 
mean square rather than sum of squares 

𝑎𝑑𝑗. 𝑅ଶ 𝑜𝑟 𝑅തଶ = 1 −
𝑀𝑆𝐸

𝑀𝑆𝑌
= 1 −

(1 − 𝑅ଶ)(𝑛 − 1)

(𝑛 − 𝑝)

= 1 −
(1 − 𝑅ଶ)(𝑛 − 1)

(𝑛 − 𝑘 − 1)
                      (11) 

3.4   Mallows’𝑪𝑷 criterion 

     The 𝐶 criterion was proposed by Mallows (1973) and 
it is denoted as 

𝐶 =
𝑆𝑆𝐸

𝑆ଶ
+ 2𝑃 − 𝑛 =

𝑆𝑆𝐸

𝑆ଶ
+ 2(𝐾 + 1) − 𝑛    (12) 

Here 𝑆ଶ is an estimate of 𝜎ଶ, n is the number of 
observation, 𝑆𝑆𝐸 is the sum of squares error from the 𝑝 
variable subset model.. 
 

IV.  Experimental results and discussion 

The data used in this paper is a primary data collected from 
the department of statistics, school of applied science, 
Federal Polytechnic, Ekowe Bayelsa State; 2017/2018 
Academic session which sample size is 50 and the 
predictive variables are the Joint AdmissionsS and 
Matriculation Board (JAMB) subjects offered by the 
respective students of the department of Computer Science 
that were given provisional admission into the polytechnic, 
while the response variable is the Grade Point Average 
(GPA) of the respective students in the department at the 
end of first academic section which comprises of first and 
second semester examinations. The statistical software 
used in analyzing this paper is Minitab 16.0 version. 

4.1 Regression Analysis: GPA versus Chem, Maths, 
English, Physics  
 
The regression equation is 

GPA = - 1.19 + 0.0196 Chem + 0.0120 Maths + 0.0147 
English + 0.0227 Physics 

Predictor      Coef   SE Coef      T      P 
Constant    -1.1857    0.4678  -2.53  0.015 
Chem       0.019553  0.007471   2.62  0.012 
Maths      0.011991  0.007923   1.51  0.137 
English    0.014707  0.008147   1.81  0.078 
Physics    0.022677  0.007503   3.02  0.004 

 
 

S = 0.285184   R-Sq = 65.7%   R-Sq(adj) = 62.6% 
 
 

Analysis of Variance 
 

Source          DF       SS      MS      F      P 
Regression       4   6.9975  1.7494  21.51  0.000 

Residual Error  45   3.6598  0.0813 
Total           49  10.6573  

 
4.2 Stepwise Regression: GPA versus Chem, Maths, English, Physics  

 
Forward selection.  Alpha-to-Enter: 0.25 

 
Response is GPA on 4 predictors, with N = 50 

 
 

Step             1        2        3        4 
Constant    0.1351  -0.3424  -0.9860  -1.1857 

 
Physics     0.0444   0.0299   0.0225   0.0227 
T-Value       6.81     4.21     2.96     3.02 
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P-Value      0.000    0.000    0.005    0.004 
 

Chem                 0.0238   0.0256   0.0196 
T-Value                3.61     3.99     2.62 
P-Value               0.001    0.000    0.012 

 
English                       0.0175   0.0147 
T-Value                         2.18     1.81 
P-Value                        0.034    0.078 

 
Maths                                  0.0120 
T-Value                                  1.51 
P-Value                                 0.137 

 
S            0.336    0.301    0.289    0.285 
R-Sq         49.16    60.17    63.91    65.66 
R-Sq(adj)    48.10    58.48    61.56    62.61 
Mallows Cp    20.6      8.2      5.3      5.0 

 
4.3 Stepwise Regression: GPA versus Chem, Maths, English, Physics  
 

Backward elimination.  Alpha-to-Remove: 0.1 
Response is GPA on 4 predictors, with N = 50 

 
 

Step              1        2 
Constant    -1.1857  -0.9860 

 
Chem         0.0196   0.0256 
T-Value        2.62     3.99 
P-Value       0.012    0.000 

 
Maths        0.0120 
T-Value        1.51 
P-Value       0.137 

 
English      0.0147   0.0175 
T-Value        1.81     2.18 
P-Value       0.078    0.034 

 
Physics      0.0227   0.0225 
T-Value        3.02     2.96 
P-Value       0.004    0.005 

 
S             0.285    0.289 
R-Sq          65.66    63.91 
R-Sq(adj)     62.61    61.56 
Mallows Cp      5.0      5.3 

 
  

4.4 Stepwise Regression: GPA versus Chem, Maths, English, Physics  
 

  Alpha-to-Enter: 0.15  Alpha-to-Remove: 0.15 
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Response is GPA on 4 predictors, with N = 50 

 
 

Step             1        2        3        4 
Constant    0.1351  -0.3424  -0.9860  -1.1857 

 
Physics     0.0444   0.0299   0.0225   0.0227 
T-Value       6.81     4.21     2.96     3.02 
P-Value      0.000    0.000    0.005    0.004 

 
Chem                 0.0238   0.0256   0.0196 
T-Value                3.61     3.99     2.62 
P-Value               0.001    0.000    0.012 

 
English                       0.0175   0.0147 
T-Value                         2.18     1.81 
P-Value                        0.034    0.078 

 
Maths                                  0.0120 
T-Value                                  1.51 
P-Value                                 0.137 

 
S            0.336    0.301    0.289    0.285 
R-Sq         49.16    60.17    63.91    65.66 
R-Sq(adj)    48.10    58.48    61.56    62.61 
Mallows Cp    20.6      8.2      5.3      5.0 

 

    Using Minitab statistical software in analyzing the 
above procedures, the same subsets of four independent 
(predictor) variables were selected for forward selection 
procedure and that of stepwise selection procedure. The 
𝑅ଶ = 65.7 in both the forward and stepwise selection 
procedure which shows the percentage of the GPA 
explained by the regression and also indicates how better 
the goodness of fit of the regression model to the sample 
data. 
      Now, considering the hypothesis testing of  𝐻: 𝛽ଵ =
⋯ = 𝛽ସ = 0 versus 𝐻ଵ: not all the 𝛽

ᇱ𝑠 are zero. 𝐹. =
ெௌோ

ெௌா
= 21.51 from the ANOVA table above, where 

𝑛 = 50, 𝑘 = 4, 𝛼 = 0.05, also the 𝐹௧. = 𝐹ଵିఈ; 𝑘, 𝑛 −
𝑘 − 1 = 𝐹ଵି.ହ;  4, 50 − 4 − 1 = 𝐹.ଽହ; 4, 45 = 2.57. 
Since 𝐹. > 𝐹௧. We reject 𝐻 and accept 𝐻ଵ (the 
alternative hypothesis) and conclude that not all the 𝛽

,𝑠 are 
zero, meaning that the explanatory variables have 
significant influence on the dependent variable (GPA).  

V. Conclusion 
 
In this paper, we have discussed multiple regression 
analysis of students’ performance using different variable 
selection procedure. From the experimental results, it was 

observed that forward selection procedure and stepwise 
selection procedure performed the same in terms of 
selecting the same variable subsets. The 𝑅ଶ method is 
actually reasonable for the purpose of variable selection 
and it gives a clearer idea about the increase in variation 
explained by regression equation in terms of adding new 
variable in the model. 
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Appendix 

Chem Maths Eng    Phy      GPA 
41 56 64 55 2.88 
54 57 53 49 2.54 
61 64 52 48 3.12 
57 61 56 58 2.45 
48 62 54 57 3.08 
72 64 65 68 3.42 
57 55 48 61 2.55 
55 54 62 54 2.24 
54 52 50 46 1.89 
56 62 49 54 2.44 
45 52 54 50 2.18 
62 56 48 62 2.56 
53 57 52 60 2.66 
56 62 56 58 3.00 
60 47 44 62 2.75 
61 54 58 63 2.86 
52 42 46 48 1.90 
48 56 53 51 2.06 
42 50 62 54 2.34 
65 60 63 67 3.34 
53 52 50 54 2.26 
56 60 48 58 2.45 

49 52 54 52 2.24 
 

Chem Maths Eng    Phy      GPA 
54 56 62 54 2.64 
64 62 60 56 3.06 
66 64 48 56 3.04 
70 72 54 62 3.46 
72 66 54 62 3.56 
65 64 58 60 2.88 
44 48 52 56 2.34 
53 57 55 53 2.33 
48 50 53 45 1.90 
51 54 53 62 2.54 
48 50 54 56 2.67 
54 55 62 48 2.48 
54 58 52 50 2.86 
58 56 64 72 3.11 
48 46 52 54 2.58 
52 56 64 67 2.65 
56 62 66 70 3.26 
68 74 62 82 3.68 
48 46 51 54 3.00 
56 52 50 61 2.44 
52 62 46 50 1.87 
48 45 49 53 2.24 
53 63 56 58 2.86 
34 52 50 45 1.98 
54 62 62 56 2.32 
56 59 56 54 3.03 
62 49 62 65 3.34 
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