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Abstract- Spline Smoothing is used to filter out noise or
disturbance in an observation, its performance depends on
the choice of smoothing parameters. There are many methods
of estimating smoothing parameters; most popular among
them are; Generalized Maximum Likelihood (GML),
Generalized Cross-Validation (GCV), and Unbiased Risk
(UBR), this methods tend to underestimate smoothing
parameters in the presence of autocorrelation error. A new
Spline Smoothing Estimation method is proposed by
modifying the Generalized Cross-Validation and Unbiased
Risk methods. It is demonstrated through a simulation study
performed by using a program written in R to compare jthe
new Spline Smoothing Estimation method and the three
existing methods, the comparison was based on the predictive
Mean Score Error criteria. The Proposed method/ is
recommended; because it performed better than, other
methods, especially for a small sample size.
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I. INTRODUCTION

In non-parametric regression, Smoothing is of great
importance because it(is used to filter out noise or
disturbance in an observation; it is commonly used to
estimate the mean_function in a nonparametric regression
model, it is also ‘the most popular methods used for
prediction inh “hen<parametric regression models. The
generahspline smoothing model is given as:

yi f(Xl)+gl (1.1)
Where; Y; is the observation values of the response
variable y, f is an unknown smoothing function, X; is the
observation values of the predictor variable x and g; is

normally distributed random errors with zero mean and
constant variance.

The main objective ofthis research is to estimate f(.)
when x = t; bupnot hiceessarily equally spaced, with ¢, <. .
. <t, (time) and &;is asstmed to be correlated. Diggle and
Hutchinson (1989). Fherefore, this research shall consider
the spline_smoothing for non-parametric estimation of a
regression funetion in a time-series context with the model,

yi:f(ti)+gti (1.2)

where; Y; = observation values of the response variable y, f
= an unknown smoothing function, t; = time fori=1...n,
&= zero mean autocorrelated stationary process.
Smoothing spline arises as the solution to a nonparametric
regression problem having the function f(x) with two
continuous derivatives that minimizes the penalized sum of
squares

$$ T (N=3 i = () + 2[" A GOf @ W

where; A is a smoothing constant, the first term in the
equation is the residual sum of square, the second term is a
roughness penalty, which is large when the integrated
second derivative of regression function f'(x) is large when
f(x) is rough (i.e. with rapidly changing slope). The
parameter A controls the trade-off between goodness-of-fit
and the smoothness of the estimate and is often referred to

as the smoothing parameter. If A is 0 then /() simply
interpolates the data, if A is very large, then / will be

selected so that /" (¥) is everywhere 0, which implies a
globally linear least-squares fit to all data. There is the
need to tackle the problem associated with estimating the
best spline smoothing methods for time series observation
in the presence of correlational error, Diggle and
Hutchinson (1989).

There are vast literatures on Spline Smoothing
modeling of time series data in the presence autocorrelated
error; Diggle and Hutchinson (1989), Yuedong (1998),
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Yuedong et. al. (2000), Opsomer, Yuedong and Yang
(2001), Wahba et. al. (1995), Carew et. al (2002), Hall and
Keilegom (2003), Francisco-Fernandez and Opsomer
(2005), Hart and Lee (2005), Krivobokova and Kauermann
(2007), Shen (2008), Kim, Park, Moon, and Kim (2009),
Morton et.al. (2009), Wang, Meyer and Opsomer (2013),
Adams, Ipinyomi and Yahaya (2017) Chen and Huang
(2011).

The objective of this study is to propose a new
smoothing method (PSM) by modifying two of the existing
spline smoothing methods (i.e. the Generalized Cross
Validation (GCV) and Unbiased Risk (UBR)) and compare
it with three existing estimation methods namely;
Generalized Maximum Likelihood (GML), Generalized
Cross Validation (GCV) and Unbiased Risk (UBR) for
time series observations in the presence of autocorrelated
error.

Spline smoothing estimation methods for time series
observations in the present of autocorrelation error were
discussed in section one. Section two reviews the existing
spline smoothing method and the proposed selection
method, Section 3 presents the Monte Carlo simulation
study, equation used for generating values in simulation
and experimental design and data generation, section four
compares the four methods via a simulation study, and
finally, the result discussion and conclusion were presented
in last section.

II. GENERALIZED CROSS-VALIDATION (GCV)
ESTIMATE METHOD

Several methods have been proposed for choesing the
smoothing parameter. The most attractiye class’ of such
method is the Generalized Cross-Validation (GCV), given
as;

2
(1-4,)0|

2
([ -4 A )] (1.4)
Where; n is Pairs of mmeasturement/observations {xi,yi}, A is
Smoothing parameters, ‘A, _is the ith diagonal element of
smoother matrix.

1
n

GCV =

[+ Trace

a. Generalized Maximum Likelihood (GML)
Estimation Method

A"Bayesian model provides a general framework for the
GML method and can be used to calculate the posterior
confidence intervals of a spline estimate.

The GML estimates of A is the maximizers of

y' (1= AW)y
ldet * (71— aca))) e
Where; det+(1 —A(/l)) is the product of the n — m

nonzero eigenvalues of [I — A(A)], y is Smoothing
parameter, W is the correlation structure, A is the diagonal
element of smoother matrix, n 1is the pairs of
measurement/observations and m is number of zero
eigenvalues, Wahba (1985).

M(2)= (1.5)

b. Unbiased Risk (UBR) Estimate Method

The UBR method has_been successfully used to select
smoothing parameters [for spline estimates with non-
Gaussian data; it cdn bew/developed by applying the
Weighted Meaft Squaré Errors.

The Unbiased Riskiis therefore given as;

X 2
w1 -S,)A

1
n

k=0,1,2

FR [otr (i (1 -5,

where; n is pairs of measurement/observations {xi,yi},W is
the correlation structure, A is Smoothing parameters, S, is
the ith diagonal element of smoother matrix. Yuedong
(1998).

(1.6)

c¢. Proposed Smoothing Method (PSM)

A Spline Smoothing model is defined as

yi :f(Xl)+gl (1.7)
where; Y is the response variable, X is vector of the
predictor variable, F is Regression function, and = error

term &
GCV becomes modified as

1
GA) = YW(I—SJ)YI
det[w(1-5,)

To extend GCV, unbiased Risk method was proposed and
correlation structure was introduced as;

X 2
w> (I—Sl)(

(1.8)

1
n

UA) = (1.9)

[i T race(Wk (-8, ))]2

n

where k = 1. The new Spline smoothing selection method
is proposed to allow the presence of correlation structure.

© 2018, 4 Publication of Professional Statisticians Society of Nigeria

347



Edited Proceedings of 2" International Conference

Professional Statisticians Society of Nigeria
Vol. 2, 2018

The proposed smoothing method (PSM) derived is the
minimizer of V(L) given by

(1-s, )|

1
n

P(2)=

2

Wé(l—Sﬂ)(

1
n

(1.10)

where; n is Pairs of observations, A is Smoothing
parameter, W is the correlation structure, S, is the diagonal
element of smoother matrix

IIl. MATERIALS AND METHOD

a. Equation used for generating values in
simulation

A simulation study is conducted to evaluate and compare
the performance of the four estimation methods presented
in previous sections. The model considered is

_ Sin &,
t

i + & i=1,2,..n t=€[0,2] (1.11)

t

where; €’s are generated by a first-order autoregressive
process AR (1) with mean 0, standard deviations 0.8 and
1.0 and first-order correlations (i.e. p = 0.2, 0.5 and 0.8)
and its 95% Bayesian confidence interval. Wahba, (1983)
and Diggle, (1989).

b. Experimental design and data generation

The experimental plan applied in this research work was
designed to have three sample Sizes (1), 0207 60 and 100,
three autocorrelation levels, i.e. = 0.2,0.5 and 0.8, four
smoothing functions were considered i,e. A =1, 2, 3 and 4,
two standard deviation were/considéred, i.e. ¢ = 0.8 and
1.0. The data were generated for 1000 replications for each
of the 3x3x4x2="72C ombinations of cases n, &, A,

and o. The criterion used is the PMSE values to evaluate

f , computed acCording to each of the estimation given as;

PusEQI= B )= 7)) |- (7.00=(7.))
(1:12)

where f (xl.) is the value at knots x, of the appropriate
i—0.05

n
Omay (2013). Simulation study was performed by using a
program written in R, it was used to estimate all the model
parameters, the criterion, the effect of autocorrelation on

function given as Xx; = Aydin, Memmedli and

the estimated parameters and the performances of the four
estimation methods i.e. Generalized Maximum Likelihood
(GML), Generalized Crossed Validation (GCV), Unbiased
Risk (UBR) and the Proposed Smoothing Method (PSM).

IV. SIMULATION RESULT

In this study, we presented a modified Spline smioothing
estimation method and compared its efficiency.with_three
existing estimation methods namely; they Generalized
Cross-Validation, Generalized Maximum.Likelihood and
Unbiased Risks, we computed Predi¢tiye whean square
errors criterion to measure their efficiency.

a. Performance of the four smoothing methods based

on predictive mean square error.

Criterion when ¢ = 0.8:

Table 1 presents the"predictive mean square error for the
four estimatars, thtee sample sizes, four spline smoothing
levels and three correlation error levels at 0.8 sigma level.
It was discovered that for GCV and for sample size 20 the
predictive /mean square error of 4.938284 at A = 1,
decreases ;to 2.789043 at A = 2 and further decreased to
2.018062 when A = 4. The predictive mean square error
increases as the level of autocorrelation increases from
4938284 when o = 0.2 to 5.735483 when o = 0.5 and to
5.70041 when o = 0.8 for smoothing function (A) = 1 and
sample size = 20. It was also discovered that the predictive
mean square error decreases as the sample size increases;
at n = 20 the PMSE decreased from 4.938284 to 1.353605
at n = 60 and further deceases from 1.353605 to 0.394855
at n = 100 and for smoothing function (A) = 1.

The predictive mean square error (PMSE) of
GML decreases from 3.788134 at A =1, to 3.624478 at A =
3 and then decreased to 3.615046 at A = 4. At sample size
20 the predictive mean square error is 3.902353, it
decreased to 2.328352 as the sample size increased to 60
and further decreased to 2.314015 as the sample size
increased to 100. It is noticed that the PMSE of GML
increases from 2.638143 to 2.804273 as the autocorrelation
error level increases of 0.2 to 0.5, but decreases from
2.804273 to 2.625861 as the autocorrelation level increases
from 0.5 to 0.8. For all the other increase in autocorrelation
error levels, the PMSE increased correspondingly, thus
there is efficiency in GML.

For the Proposed Smoothing Method (PSM), it was
discovered that the predictive mean square error increases
as the autocorrelation level increases and decreases as the
sample size increases. At sample size 20 the predictive
mean square error of 4.208490 at A = 2 decreases to
4.202272 at A = 3 and further decreases to 3.615946 when
A = 4. The predictive mean square error of PSM decreases
as the sample size increases, for A = 1 and autocorrelation
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level of 0.2. PSM decreased from 4.188747 at sample size
=20 to 2.853925 at sample size 60 and further decreased to
2.287803 at sample size 100. The predictive mean square
error of PSM increases from 2.853925 to 1.822216 as the
autocorrelation error level increases of 0.2 to 0.5 for
sample size is 60 and increases from 1.822216 and
1.812007 as the autocorrelation error level increases of 0.5
to 0.8 for sample size is 60.

The predictive mean square error for UBR increases as the
autocorrelation level increases and decreases as the
smoothing levels and sample sizes increase. At sample size
20 the predictive mean square error of 3.777261 at A = 1,
decreases to 3.469432 at A = 2, decreases to 3.416732 at A

= 3 but increased slightly to 3.98581 when A = 4. The
predictive mean square error of UBR decreases as the
sample size increases, for A = 2 and autocorrelation level of
0.5, UBR decreases from 3.469432 at sample size = 20 to
1.88788 at sample size 60 and further decreased to
1.431244 at sample size 100. The predictive mean square
error of UBR increases from 3.416732 to 3.526772 assthe
autocorrelation error level increases of 0.2 .to 0.5-for
sample size is 20 and increases from 3.526772 and
3.611808 as the autocorrelation error levelincreases of 0.5
to 0.8 for sample size the same sample size:

Table 1: The MSE result of the simulated study for GML, GCV, PSM and UBR in the pfesence of autocorrelation (& ) =
0.3, 0.5 and 0.8 for n = 20, 60 and 100 when standard deviation (c) = 0.8.

PMSE
———— e N-oOm ¥ _ Nzl
A Smoothing
Methods p=0.2 p=0.5 p=0.8 p=0.2 p=40.5 p=0.8 p=0.2 p=0.5 p=0.8
A=1 GCV 4.938284 5.735483 5.700411 1.353605 37179886 5.817303 0.394855  4.190077  4.753061
GML 3.788134  3.902353 4.557857 2.328352 2.429546 2.625861 2314015  2.836043  2.438085
PSM(k=1) 4.188747 1.977449 2.05909 2.853925 1.822216 1.812007 2287803  1.573442  1.605743
UBR 3.777261 2.810875 1.449087 2.101405 2.317046 1.118518 1.913073  2.079789  0.841755
A=2 GCV 2.789043 3.755684 5.368908 1123143 1.374032  4.406313 0.341562 2.96876 3.188995
GML 2.638143 2.804237 1.300494 2.19448 2.018002 1.027948 2.040446  1.334802 0.171129
PSM(k=1) 4.208498 2.018938 2.105152 2.823294 1.879530 1.778426 2287803  1.573403 1.200836
UBR 3.469432 2.506771 1.017353 1.88788 1.616574 1.230349 1.431244  0.220508 1.532589
A=3 GCV 3.175146 3507623 4218419 2472227 1.730359 1.456264 0.334902  0.815361 1.992452
GML 3.624478 3802802  4.263339 2.094332 2.958588 2.996486 1.990265 2.22264 0.8030926
PSM(k=1) 4202272 2.025768 2.112142 1.816911 0.175471 1.765224 1.531958  0.467133 0.124897
UBR 31416732 3.526772 3.611808 1.857928 2.525618 2.564013 1.361115  1.866935 3.321139
rA=4 GCV. 2:018062 3.42688 2.169436 1.094332 0.173144 2.74644 0.332736  2.765412  2.928445
GML 3.615946  2.800514 1.250932 2.175146 1.938749 5.985579 1.973208  1.984518 5.983278
PSM(k=1) 4.11762 2.028096  2.114477 1.814626 1.701375 1.760514 1.500005  1.430172 1.098286
UBR 3.398581 3512612 4.927715 1.857928 1.94582 3.615934 1.337717  1.815722 3.257353

Table 2 presents the predictive mean square error for the
four estimators, three sample sizes, four spline smoothing
levels, three correlation error levels and at 1.0 sigma level.
It was discovered that for GCV, at a = 0.5 and sample size
20 the predictive mean square error of 2.217985 at A = 1,

decreases to 2.038837 at A = 2, decreases to 1.975886 at A
= 3 and further decreased to 0.873763 when A = 4. The
predictive mean square error increases as the level of
autocorrelation increases from 2.217985 when o= 0.2 to
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4.652218 when a = 0.5 and to 5.219997 when a = 0.8 for
smoothing function (A) = 1 and sample size = 20. It was
also discovered that for smoothing function (A) = 2, the
predictive mean square error decreases as the sample size
increases; at n = 20 the PMSE decreased from 2.038837 to
1.036064 at n = 60 and further deceased to 0.106917 at n =
100.

The predictive mean square error (PMSE) of GML
decreases as the smoothing parameter increases. For small
sample size and at o = 0.8, the predictive mean square error
decreased from 1.460676 at A=1to 1.191663 at A = 2 then
decreases to 1.152826 at A = 3 and further decreased to
1.139958 at A = 4. The predictive mean square error of
GML decreases as the as the sample size increases.

At sample size 20 the predictive mean square error is
1.402249, it decreased to 1.285324 as the sample size
increased to 60 and further decreased to 0.917754 as the
sample size increased to 100. It is noticed that the
predictive mean square error of GML increases from
1.344602 to 2.150393 as the autocorrelation error level
increases of 0.2 to 0.5, and increases from 2.150393 to
2.723054 as the autocorrelation level increases from 0.5 to
0.8. Thus there is efficiency in GML, but it was observed
that predictive mean square error decreased as the
autocorrelation error level increases.

For the Proposed Smoothing Method (PSM), it was
discovered that the predictive mean square error decreases
as the autocorrelation level, smoothing parameter” and
sample size increases. At sample size 20 the predictive
mean square error of 4.188747 at A = 1 in¢reased to

Observed Versus Predicted Response Lambda=1,N=20, Rho=02  observed Versus Predicted Response Lambda=3, N=20, Rho=0.2

Observed Versus Predicted Response Lambda=2, N=20, Rho=0.2

4.208498 at A = 2 but decreases to 4.02272 when A = 3 and
further decreases to 4.117621 when A = 4. The predictive
mean square error of PSM decreases as the sample size
increases, for A = 2 and autocorrelation level of 0.2. PSM
decreased from 1.706005 at sample size = 20 to 1.337262
at sample size 60 and further decreased to 1.111343 at
sample size 100. The predictive mean square error/of PSM
decreases from 1.9762941 to 1.878994, as__/the
autocorrelation error level increases of 02 to 0.5 for
sample size is 20 and further decreases from 1.878994 to
1.62727 as the autocorrelation error level/inercases of 0.5
to 0.8 for sample size is 20.

The predictive mean square emor forUBR increases as
the autocorrelation level decreases as the smoothing level
and sample size increases.

At sample size 20 thé predictive mean square error of
3946115 at A = 1, decreases to 2.285086 at A = 2 to
2.166318 at A = 3 anddfurther decreases to 1.259853 when
A = 4. The predictive mean square error of UBR decreases
as the sampleisize increases, for A = 4 and autocorrelation
level of 0.8, UBR/decreases from 2.549091 at sample size
=20 to 2:412688 at sample size 60 and further decreased to
1.540203 at:sample size 100.

Theypredictive mean square error of UBR increases
ffom 2.166318 to 2.202126 as the autocorrelation error
level increases of 0.2 to 0.5 for sample size is 20 and
increases from 2.202126 to 2.563679 as the autocorrelation
error level increases of 0.5 to 0.8 for sample size the same
sample size, but it was observed that predictive mean
square error decreased as the autocorrelation error level
increases.

Observed Versus Predicted Response Lambda=4, N=20, Rho=0.2

7 —Observed © 1 —Obsenved
- - Predicted = - Predicted

2 - —Obseed
- - Predicted

s

7 —Observed
- - Predicted

(a) (b)

(©) (d)

Figure 1: Plots of the observations (. . .) and Estimates (---) With Smoothing Parameters Chosen by GCV (a), GML (b), PSM (c), and UBR (d) for n = 20
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Table 2: The MSE result of the simulated study for GML, GCV, PSM and UBR in the presence of autocorrelation (& ) =

0.3, 0.5 and 0.8 for n = 20, 60 and 100 when standard deviation (¢) = 1.0

PMSE
TTTTTTTN=20 T T T T TTTTTTTTTR N=60 N=100
A Smoothing o TTTTTTTTTTTTTToTTTTTTTTTT T

Methods a=0.2 a=0.5 a=0.8 a=0.2 a=0.5 a=0.8 a=0.2 a=0.5 a@
A=1 GCV 2217985  4.652218  5.219991 1.5079261  3.032906  3.355379 0.109678  0.2051 4.068174
GML 1.402249  2.213838  2.854191 1.285324 2424851  2.860878 0917754 14982 1.460676

PSM(k=1)  1.9762941 1.878994 1.62727 1.681525 1.655205  2.622758 1.6251 12060796 1.814121

UBR 3.946115  2.170123  2.854018 3.477279 1.895938  1.904192 0.71 1.410622 1.391461

A=2 GCV 2.038837  1.550266  2.357644 1.036064 3.064901 3.686213 WH 0.204841 2.641265
GML 2353263  2.159928  2.742754 1.61744 1.745815 1.8017&)16592 1.484834 1.191663
PSM(k=1) 1.706005  1.883573  1.512748 1.337262 1.815278 1 7 1.111343  1.555058 0.824054

UBR 2285086  2.043898  2.606053 1.686028 1.615925 76 0.715436  0.391479 1.213843

A=3 GCV 1.975886  2.465147  2.230474 1.106586 1:865407 1.493562 0.914299  1.204822 1.462472
GML 1.344602  2.150393  2.723054 2.376657A 1.703152 1.747526 0916174  0.482901 1.152826

PSM(k=1) 1.691873  1.799777  1.490825 1.289702 165212 1.185653 1.188291 1.786081 1.525496

UBR 2.166318 2202126  2.563679 35866 2.149228 2.283664 0.715459  0.388746 1.832608

A=4 GCV 0.873763  1.437364  2.188967 0.106479 2.800442 1.430831 0.956241  0.204817 1.404276
GML 1.341634  2.147087 2.7162N 1.296255 2.050446 1.895078 0916018  0.482256 1.139858

PSM(k=1) 1.686857  1.794844  1.483121 1.2739570  1.659382 1.159813 1.104291 1.454671 1.259721

UBR 1.259853  2.014616 [,2.549091 1.221922 1.578077 2.412688 0.715468  0.387835 1.540203
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Figure 2: Plots of the Observations (. ..) and Estimates (---) With Smoothing Parameters Chosen by GCV (a), GML (b), PSM (c),and UBR (d) for n =
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Observed Versus Predicted Response Lambda=4, N=100, Rho=0.2

Observed Versus Predicted Response Lambda=1, N=100,RN002  oyycorveq versus Predicted Response Lambda=2, N=100, Rho=0.2  Observed Versus Predicted Response Lambia=3, N=100, Rho=0.2
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Figure 3: Plots of the Observations (. ..) and Estimates (---) With Smoothing Parameters Chos% , GML (b), PSM (c),and UBR (d) for n =
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Figure 4: The plot of the GML, GCV, PSM W of the MSE of the simulated study in the presence of autocorrelation when 6 =1, p =0.2 and n =
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Figure 5: The plot of the GML, GCV, PSM and UBR of the MSE of the simulated study in the presence of autocorrelation when c =1, p =0.2 and n =
60
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Figure 6: The plot of the GML, GCV, PSM and UBR of the MSE of the simulated study in the presence of auw wheno=1,p=0.2andn=

100
The PSM me@s more stable when the sample

Figures 1 and 5 presents the predictive mean square error size is small, as%vhen N = 20 while UBR method
estimates of GCV, GML, PSM and in 1000 replications. performs slig ter when N = 60. In this case there
were several, replications where GCV and GML providing

From these plots we can see that the PSM and UBR
estimates have small PSMEs compare with GCV and more estimates of smoothing parameters which lead to
derjsmoothing of the data. This behavior of the GCV

GML. We conclude that all four methods estimate the
smoothing parameters and the functions well but the PSM method Was investigated in Wahba and Wang (1993) and
and UBR provide better estimates than GCV and GML in %(1998).

terms of mean-square error.

Table 3: Summary of the predictiv n square error and ranks of the smoothing
methods in the presence.of autocorrelation error

Autocorrelation [ [ | Smoothing method
levels GCV GML PSM (k=1) UBR
a=0.2 1.08 w 1.39 1.47 1.63
a=0.5 1. 1.71 1.66 1.48
a=0.8 o 263 1.99 1.27 2.09

Grand mean

1.87 1.70 1.47 1.73
Rank 2 1 3

Table 4:Summary of the predictive mean square error and ranks of the smoothing
methods based on sample size

2 Smoothing method_____
GCV GML PSM (k=1) UBR
=20 2.434 2.179 1.711 2.326
Q: 60 2.041 1.900 1.549 1.921
n=100 1.124 1.047 1.145 0.951
Grand mean 1.867 1.709 1.468 1.732
Ranks 4 2 1 3

presented in tables 3 and 4 showed that all the smoothing
methods compared and compete favorably in the presence
of autocorrelation error and increase in sample size. The
simulation result under the finite sampling properties of

V. DiscussiOoN OF RESULT

In this study, we presented Spline smoothing estimation
method for time series observations in the presence of auto
correlated errors and based on sample size. The result

PMSE criterion shows that all estimators are consistent and
adversely affected by auto correlated error the estimators’
ranks as follows, PSM, GML, UBR and GCV. The result
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suggested that PSM should be preferred when
autocorrelation level is mild and high (a = 0.5 — 0.8). If
there is low autocorrelation in the observations, (i.e. o =
0.2 — 0.5) the unbiased Risk (UBR) should be considered.
It was observed that GCV and GML were mostly affected
by the presence of auto correlation and therefore had an
asymptotically similar behavioural pattern.

It was also discovered that the estimators conformed to
the asymptotic properties of the smoothing methods
considered; this is noticed in all the sample sizes and at all
the smoothing parameters.

VI. CONCLUSION

The most consistent and efficient among the four spline
smoothing methods considered in this study based on
sample size and performance in the presence of
autocorrelation error is the proposed smoothing method
(PSM) because it does not undersmooth relative to the
other smoothing method especially for small sample size
i.e. n = 20 and 60.(see figure 1 and 2). The result of this
experiment with n = 20 and n = 60 is in slight agreement
with the monte-carlo results from Barry (1983) and Wahba
(1985).

It is also noticed that the predictive mean square error
of the proposed smoothing method (PSM) goes to zero at a
faster rate in the presence of autocorrelation error than
PMSE of the other smoothing methods considered in thi
study (see tables 3 and 4). The next in terms jof
performance, consistency and efficiency in the presence of
autocorrelation is Generalized Maximum _Likelihood
(GML), Unbiased Risk (UBR) and the ‘least n is
Generalized Cross-Validation (GCV).
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