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Abstract — In this paper, we introduce a new flexible 
family of distributions with bounded support, called 
reflected minimax distribution (RMD), obtained by 
reflecting Minimax distribution (Jones, 2009) about the 
y-axis and shifting it 0   units to the right. We 
proposed standard reflected minimax distribution 
(SRMD) from this family which includes, as special 
cases, some distributions on (0,1) support such as the 
one-parameter minimax distribution, the power 
distribution, and uniform distribution. This work is an 
attempt to partially fill a gap regarding the issue of 
tractability of continuous distributions with bounded 
support, which appear to be very useful in many real 
contexts. Some properties of the family, including 
moments, hazard rate and quantile are investigated. 
Moreover, the estimators of the parameters are examined 
using the least squares, maximum likelihood and 
maximum product of spacings estimation methods, and 
an application reported. 

Keywords: Minimax distribution, Reflected minimax 
distribution, Failure rate function, Moments, Maximum 
product of spacings. 

      I. Introduction 

Advances had been made towards the development of 
standard distributions, with continued renewed interest in 
more flexible probability distributions. Most of the new 
proposals in the literature are distributions with unbounded 
support. According to [1], in the face of the numerous 
proposals of distributions with unbounded support 
emerges, undoubtedly, the great scarcity of distributions 
with bounded support.  

There are many real-life situations in which the 
observations clearly can take values only in a limited 
range, such as percentages, proportions or fractions. This is 
often encountered in the study of the finite lifetime of a 
component or the bounded signals occurring in industrial 
systems. In this perspective, the models with infinite 

(unbounded) support can be viewed as an unrealistic 
approximation of the reality.  

Beta and Kumaraswamy distributions, see [2], are the 
most used laws on bounded support. The latter was 
referred to as the two-parameter minimax (TPM) 
distribution in [3], and shares many desirable properties 
with some tractability advantages over the beta 
distribution. The major drawback of the beta distribution is 
the use of special functions in its implementation; the 
incomplete beta function ratio. Yet, it is still unclear if the 
tractability advantages of TPM distribution over the beta 
will be of immense practical significance.  

In this paper, we propose a three-parameter reflected 
minimax distribution (RMD) with the hope of adding to 
the flexibility of TPM distribution for better application in 
practical situations. 

Other less known two-parameter distributions on 
bounded support include the standard Two-sided Power 
distribution by [4], the Log–Lindley distribution by [5, 6] 
and Log-shifted Gompertz distribution by [7]. Proposals 
with more parameters include the three-parameter reflected 
generalized Topp–Leone power series distribution by [8], 
the four-parameter exponentiated Kumaraswamy-power 
function distribution by [9] and the five-parameter 
Kumaraswamy generalized gamma distribution by [10], 
among others.  

.  
                   II. Methodology 

A. Defining the Reflected Minimax Distribution 

The probability density function (pdf) of the TPM 

distribution is  

  11( ) 1 ;g x x x
 
       0 1x  . 

Reflecting the TPM distribution about the y-axis and 

shifting it 0   units to the right gives a pdf of 

     
11

| , , 1 ,f x x x
      
        (1) 
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with corresponding cumulative distribution function (cdf) 

   | , , 1 ;F x x
           1 ,x     (2) 

where 0   is the reflecting parameter that will reflect the 
distribution from positive skewness to negative and vice 
versa, while , 0    are shape parameters. 

B. Standard Reflected Minimax Distribution 

We define the standardized version of RMD (SRMD) by 

substituting 1   in Eqs. (1) and (2), with the pdf 

      
11

| , 1 1 1 ,f x x x
   
         (3) 

and the cdf 

   | , 1 1 ;F x x
            0 1.x    (4) 

This definition is particularly important because it gives a 
direct reflection of the TPM distribution studied in [9]. 

C. Special Cases of SRMD 

Case 1: When 1  , SRMD reduces to one-parameter 

minimax (OPM) distribution with pdf given as 

    1
| 1 ;f x x

     0 1,x  0.    (5) 

Case 2: When 1,   SRMD reduces to Power distribution 

with pdf given as 

  1| ;f x x    0 1,x  0.    (6) 

Case 3: When 1,    SRMD reduces to Uniform 

distribution with probability unity. 

D. Shapes of SRMD 

The SRMD can also be shown to have some basic shape 
properties as the TPM and beta distributions, which could 
be constant, increasing, decreasing, unimodal, and uni-
antimodal. 
 
 

Figure 1: Plots of the SRMD density functions at different paramters values. 

 
 

III. Prperties of RMD 

E. Failure Rate Function 

From Eqs. (1) and (2) it follows that the failure rate (also 
called hazard rate) function for an RMD density is: 

 
   

 

11
1

.
1 1

x x
r x

x

 



  



     
    
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 ; ,x
x

 


 


    (8) 

which, on setting 1  , is the failure rate of OPM 
distribution by [11]. From Eq. (8) one observes that 

varying values of the parameters   and   in  ; ,x    

would shrink (or stretch) the failure rate of an RMD as 
compared to an OPM distribution. Thus,   may be 
interpreted as a shrinkage parameter, i.e., a larger value of 
  causes the failure rate to stretch out (to the right) while 
the smaller value of   results (continuously) in a drift of 
the failure rate towards the left-hand side. The failure rate 
function is generally J-shaped and monotonically 
increasing.  
 

 
Figure 2: Plots of the RMD failure rate 

 
 

F. Moments 

It would be better to find the moment of the quantity 

 r
X   first, and then appropriately manipulate it to 

obtain the moment of ;rX  1, 2,...r   

  1 , .
r r

E X B  


    
 

   (9) 

When 1r   in (9), the mean of RMD may be expressed as 

  1
1 , .E X B   


     
 

   (10) 

Substituting 1   in Eq. (10) yields the mean of SRMD 

SRMD

1
1 1 ,B  


    
 

, 

where 
1

1 ,B 


  
 

 is the mean of a TPM distribution. 

By using appropriate moment expressions, the variance of 
the RMD is obtained as  

2

2 2 1
1 , 1 , ,B B    

 
           

    
 

which is free from the reflecting parameter ,  and 
equivalent to that of the TPM distribution. 

G.  Quantile Function and Median 

The cdf defined in Eq. (2) is readily invertible to obtain the 
quantile function of RMD as 

 
1

1

1 ;Q u u


     
 

    0 1.u    (11) 

The median of RMD is obtained by setting 0.5u   in Eq. 
(11) 

1
1

Median 1 0.5 .


     
 

 

IV. PARAMETER ESTIMATION 

In order to estimate the shape parameters  ,   of the 

RMD, we consider the methods of least squares, the 
maximum product of spacings, and maximum likelihood.  

A. Method of Least-Squares (MLS) 

Suppose  :i nF X  denotes the distribution function of the 

ordered random variables 1: 2: :...n n n nX X X    where 

 1 2, ,..., nX X X is a random sample of size n  from the 

distribution function  | , .F x    The least-squares 

estimators of   and   can be obtained by minimizing 

with respect to   and  , the function 

 
2

:
1

| , .
1

n

i n
i

i
F x

n
 



   
  

 

B. Method of Maximum Product of Spacings (MPS) 

Using the same notation as above, we define the uniform 
spacings of a random sample from the RMD as: 

     : 1:, | , | , ,i i n i nD F x F x       1,2,...,i n  

where  0: | , 0nF x    ,  1: | , 1n nF x     and 

 1

1
, 1.

n

ii
D  


  
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following [12] and the reference therein, the maximum 
product of spacings estimates of   and   are obtained by 

maximizing, with respect to   and  , the geometric 

mean of the spacings: 

   
1

1 1

1

, , .
n n

i
i

G D   
 



 
  
 
  

C. Method of Maximum Likelihood (MML) 

Let 1 2, ,..., nX X X  be a random sample of size n  from a 

RMD with the parameters   and   unknown, and denote 

by 1 2, , ..., nx x x  the observed values. The log-likelihood 

function is obtained as 

     

   

1

1

log , log log 1 log

1 log 1 .

n

i
i

n

i
i

L n n x

x


     

 





    

     




 

The ML estimates of   and   are the values ̂  and ̂  

that maximize the  log , .L    Thus, 

 
1

ˆ log 1 ,
n

i
i

n x
 



       

and ̂  is obtained by optimizing the score equation (Jones, 
2009), given by 

     
 

2
1

3

1
0,

T
S T

T


 

 
      
  

 where  

   1
1

1

log
,

1

n
i

i i

x
T n

y


 






     1
2

1

log
,

1

n
i i

i i

y x
T n

y


 








    1
3

1

log 1 ,
n

i
i

T n y 



   

and ,i iy x   1,...,i n .   

The estimate ̂  cannot be obtained in closed form and 
therefore, the use of MCMC procedure may be adopted. 

V. SIMULATION 

We compare the performance of the proposed estimation 
methods based on the simulation results of 1000 
independent replications. Results are summarized in Tables 
1-2 for different values of ,n ,   and .   

 
 
 
 
 
 

Table 1: MPS Estimates 

 5   2   1   

̂  RMSE ̂  RMSE ̂  RMSE 

25n   4.75 
 

1.07 
 

2.25 
 

1.47 
 

0.99 
 

0.06 
 

50n   4.84 
 

0.75 
 

2.15 
 

0.95 
 

0.99 0.03 
 

200n   4.95 
 

0.39 
 

2.05 
 

0.37 
 

1.00 
 

0.01 
 

500n   4.97 
 

0.24 
 

2.02 
 

0.19 
 

1.00 
 

0.01 
 

 

Table 2: MLS Estimates 

 5   2   1   

̂  RMSE ̂  RMSE ̂  RMSE 

25n   5.48 
 

0.49 
 

2.18 
 

0.19 
 

0.52 
 

0.48 
 

50n   5.64 
 

0.65 
 

2.09 
 

0.12 
 

0.46 
 

0.54 
 

200n   5.53 
 

0.54 
 

2.08 
 

0.09 
 

0.35 
 

0.65 
 

500n   5.90 
 

0.90 
 

2.03 
 

0.05 
 

0.32 
 

0.68 
 

 
We observe that MML gives approximately the same 
estimates as MPS and performed better with less bias and 
root-mean-square error, than those obtained by MLS. For 
the sake of saving space, we present only the numerical 
results obtained using MLS and MPS in the particular case 

1  . 

VI. APPLICATION 

We have demonstrated the performance of RMD using 

Antimicrobial Resistance data available in the report 

(European Centre for Disease Prevention and Control, see 

[13]). The data represent the annual percentage of 

antimicrobial resistant isolates in Portugal in the year 2012: 

0.01, 0.01, 0.03, 0.05, 0.08, 0.12, 0.14, 0.15, 0.15, 0.16, 

0.19, 0.20, 0.20, 0.23, 0.26, 0.30, 0.32, 0.36, 0.39, 0.43, 

0.54, 0.58, 0.59. We compared the standardized version of 

RMD (SRMD) with TPM, beta, Log-shifted Gompertz 

(LG), Log-Lindley (LL), and Two-sided Power (TP) 

distributions, and obtained a better fit for the SRMD on the 

basis of Akaike Information Criterion (AIC) and Bayesian 

Information Criterion (BIC). The results are presented in 

Table 3. 
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Table 3: Antimicrobial Resistance Model Fitting Estimates 

Distributions ML Estimates Log-lik AIC BIC 

 

   
11

SRMD ,

1 1 1x x
 

 


     

 ˆˆ  3.538, 1.116  
 

11.52
 

-17.04
 

-18.36
 

 

  11

TPM ,

1x x
 

 


 

 ˆˆ 0.8649, 2.1116  
 

7.56
 

11.13
 

12.45
 

 

    11

beta ,

1
1

B ,

ba

a b

x x
a b

 
 ˆˆ 0.8562, 2.1635a b 

 
7.52

 
11.05

 
12.37

 

 
 

LG ,

1 1 xx x e
  

 

     
 ˆˆ 2.5361, 1.0693  

 
8.41

 
12.83

 
14.14

 

 
  1

LL ,

1 log a

a b

a b a b x x    
 ˆˆ 1.0918, 0.0643a b 

 
7.87

 
11.74

 
13.06

 

 
1

1

TP ,

,0

1
, 1

1

x
x

x
x





 

 


 






      
  


      

 

ˆ ˆ0.010, 2.5168  
 

7.68
 

11.37
 

12.69
 

 

VII. CONCLUSION 

A three-parameter probability distribution defined on the 
bounded domain is derived from the two-parameter 
minimax distribution. A standardized version of the 
proposed distribution is also defined on (0, 1), with some 
special cases on the same support. The new family of 
distributions has tractable properties. Analytical 
expressions are provided for the moments, hazard rate and 
quantile functions. The parameters can be easily estimated 
by the method of maximum product of spacings (or the 
alternative method of maximum likelihood), which 
provided better results than the method of least squares. 
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