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Abstract — Volatility forecasting has been the subject of 
recent empirical studies and theoretical investigation both in 
academia and financial markets because it is one of the 
primary inputs to a wide range of financial applications from 
risk measurement to asset and option pricing. GARCH family 
of models have been extensively applied in volatility 
forecasting, but one of their limitations is that these models 
produce better results in relatively stable markets and could 
not capture violent volatilities and fluctuations. Neural 
Networks (NNs) trained by Back Propagation gradient 
descent algorithm are known to have the capability to learn 
any complex approximate relationships between the inputs 
and the outputs with a very slow convergence  rate for most 
practical applications.   In this study, we proposed two hybrid 
models based on EGARCH and Recurrent Dynamic Neural 
Networks trained by dynamic Back Propagation gradient 
based training algorithms to forecast the volatility of inflation 
rate returns in Nigeria. The estimates of volatility obtained by 
an EGARCH model are fed forward to a Neural Network. 
The input to the first model is complemented by historical 
values of the other explanatory variable. The second hybrid 
model takes as inputs both series of the simulated data and 
explanatory variables. The forecasts obtained by each of those 
hybrid models have been compared with those of EGARCH 
model in terms of closeness to standard deviation which is 
used as a measure of the actual value of volatility. The results 
show that the second hybrid model trained by Bayesian 
Regularization algorithms gives better volatility forecasts. 
This model significantly improves the forecasts over the ones 
obtained by the EGARCH model.  

Keywords-Forecasting, Volatility, GARCH, Neural Network, 
Back propagation. 
 

a. INTRODUCTION  

Neural Networks (NNs) are non-linear data driven self-
adaptive approach as opposed to the traditional model 
based methods. They are powerful tools for modelling, 
especially when the underlying data relationship is 
unknown. These models have the capability to learn the 
complex approximate relationships between the inputs and 

the outputs of the system and are not restricted by the size 
and complexity of the system. The algorithms also learn 
these approximate relationships on the basis of actual 
inputs and outputs. Therefore, they are generally more 
precise compared to the relationships based on 
assumptions such as regressive and structural models.  

The modern view of neural networks began in the 
1940s with the work of McCulloch and Pitts (1943), who 
showed that networks of artificial neurons could, in 
principle, compute any arithmetic or logical function. Their 
work is often acknowledged as the origin of the neural 
network field. McCulloch and Pitts were followed by Hebb 
(1949), who proposed that classical conditioning is present 
because of the properties of individual neurons. He 
proposed a mechanism for learning in biological neurons. 

The first practical application of artificial neural 
networks came in the late 1950s, with the invention of the 
perceptron network and associated learning rule by 
Rosenblatt (1958) where he built a perceptron network and 
demonstrated its ability to perform pattern recognition. 
This early success generated a great deal of interest in 
neural network research. At about the same time, Widrow 
and Hoff (1960) introduced a new learning algorithm 
called Least Mean Square (LMS) algorithm and used it to 
train adaptive linear neural networks, which were similar 
in structure and capability to Rosenblatt’s perceptron.  

The perceptron learning rules developed by 
(Rosenblatt, 1958) and Least Mean Square (LMS) 
algorithm developed by  (Widrow and Hoff,1960) were 
designed to train single-layer perceptron-like networks 
which can only be used to solve linearly separable 
classification problems. Both Rosenblatt and Widrow were 
aware of these limitations and proposed Multilayer 
networks that could overcome them, but were not able to 
generalize their algorithms to train these more powerful 
networks. 

One of the key developments in the research of NNs in 
1980s was the Back Propagation algorithm for training 
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multilayer perceptron networks, which was discovered 
independently by several different researchers such as 
Rumelhart (et al.,1986) and Rumelhart and McClelland 
(1986). Back Propagation is a generalization of the LMS 
algorithm that can be used for multilayer networks; it is an 
approximate steepest descent algorithm, in which the 
performance index is the mean square error.  

The difference between the LMS algorithm and Back 
Propagation is only in the way in which the derivatives are 
calculated. For a single-layer linear network the error is an 
explicit linear function of the network weights, and its 
derivatives with respect to the weights can be easily 
computed.  

In multilayer networks with nonlinear transfer 
functions, the relationship between the network weights 
and the error is more complex. In order to calculate the 
derivatives, we need to use the chain rule of calculus. The 
Back Propagation algorithm uses the chain rule in order to 
compute the derivatives of the squared error with respect to 
the weights and biases in the hidden layers. It is called 
Back Propagation because the derivatives are computed 
first at the last layer of the network, and then propagated 
backward through the network, using the chain rule, to 
compute the derivatives in the hidden layers. 

The neural network model is an emerging 
computational technology that provides a new avenue for 
examining the dynamics of various economic and financial 
applications. Some of the applications of NNs to model 
volatility can be seen in Tseng (et al., 2008); Chang (et al., 
2011) and Kristjanpoller (et al., 2014). 

Volatility, with respect to financial products, can be 
thought of as a measure of fluctuation in a financial 
security price around its expected value.  It is one of the 
primary inputs to a wide range of financial applications 
from risk measurement to asset and option pricing.  When 
discussing the volatility of time series, econometricians 
refer to the ‘conditional variance’ of the data and the time-
varying volatility typical of asset returns which is 
otherwise known as ‘conditional heteroscedasticity’.  

The concept of conditional heteroscedasticity was 
introduced to economists by Engle (1982), who proposed a 
model in which the conditional variance of a time series is 
a function of past shocks; the autoregressive conditional 
heteroscedastic (ARCH) model. The model provided a 
rigorous way of empirically investigating issues involving 
the volatility of economic variables. An example is 
Friedman's hypothesis that higher inflation is more volatile 
(Friedman, 1977). In another work, Engle (1982) found 
that the ARCH model supported Friedman's hypothesis. 
Engle (1983) applied the ARCH model to US inflation and 
the converse results emerged, although Cosimano and 
Jansen (1988) believed that Engle estimates a mis-
specified model. The relationship between the level and 

variance of inflation has continued to interest applied 
econometricians see for example, Grier and Perry (2000)  
Traditional ARCH models were recently used by several 
authors in Nigeria to forecast volatility (Dauda, 2008; 
Olowe, 2009; Arowolo, 2013; Dahiru and Joseph, 2013; 
Yaya, 2013; Amaefula and Asare, 2014).    
The Back Propagation algorithm is an extension of the 
LMS algorithm that can be used to train multilayer 
networks. Both LMS and Back Propagation are 
approximate steepest descent algorithms that minimize 
squared error. It is known to have the capability to learn 
any complex approximate relationships between the inputs 
and the outputs. The multilayer perceptron, trained by the 
Back Propagation algorithm, is currently the most widely 
used Neural Network (Hagan et al., 1996). However, one 
of the major problems with Back Propagation has been the 
long training times. It is not feasible to use the basic Back 
Propagation algorithm on practical problems, because it 
might take weeks to train a network. 

Financial time series forecasting is one of the 
most challenging applications of modern time series 
analysis as they are inherently noisy, non-stationary and 
deterministically chaotic. The desire to forecast volatility 
of financial markets has motivated a large body of research 
during the past decades.  

The conditional volatility, calculated using ARCH 
model by Engle (1982), is currently the most popular 
method of estimating volatility. Although, many financial 
time series observations have non-linear dependence 
structure, a linear correlation structure is usually assumed 
among the time series data. Therefore, ARCH type models 
may not capture such nonlinear patterns and linear 
approximation models of those complex problems may not 
be satisfactory.  

Nonparametric models estimated by various methods 
such as Artificial Intelligence (AI), can be fit on a data set 
much better than linear models. Recently, (Hajizadeh et al 
2012) has hybridized EGARH and Neural Networks 
models to forecast the volatility of S&P 500 index but 
solely trained with the standard Back Propagation gradient 
descent algorithm which is known to have slow rate of 
convergence. 

The aim of this paper is to improve the performance of 
GARCH family models in forecasting Volatility of 
inflation rate returns in Nigeria. 

 The data used in this research consists of monthly 
inflation rates, crude oil price, consumer price index, 
export, import, money supply, interest rate and premium 
motor spirit (PMS) price obtained through Central Bank of 
Nigeria website www.cbn.gov.ng covering the period 
between January, 1995 and February, 2016. 
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b. MULTILAYER NEURAL NETWORK 

Multilayer networks are universal approximators and can 
be represented as in figure 1.  To train such networks 
means determining a procedure for selecting the network 
parameters (weights and biases) which will best 
approximate a given function. The procedure for selecting 
the parameters for a given problem is called training the 
network. The Back propagation algorithm for multilayer 
networks is a gradient descent optimization procedure in 
which we minimize a mean square error performance 
index. The algorithm is provided with a set of examples of 
proper network behaviour:   
{����},{����},….,{����},                                           (1) 

Where �� is an input to the network, and �� is the 

corresponding target output. As each input is applied to the 
network, the network output is compared to the target. The 
algorithm should adjust the network parameters in order to 
minimize the sum squared error: 

�(�) = ∑ ��
� = ∑ (�� − ��)

��
���

�
���                            (2) 

Where � is a vector containing all of network weights and 
biases. If the network has multiple outputs this generalizes 
to  

�(�) = ∑ ��
��� = ∑ (�� − ��)

�(�� − ��)
�
���

�
��� .      (3) 

Using a stochastic approximation, we will replace the sum 
squared error on the latest target: 

��(�) = (�(�) − �(�))���(�) − �(�)� = ��(�)�(�),  (4) 
Where the expectation of the squared error is replaced by 
the squared error at iteration	�. 

 
Fig. 1: Multilayer Networks 

The Back Propagation algorithm can be summarized as 
follow:  

 The first step is to propagate the input forward 
through the network: 

																		�� = �,                                                        (5) 
	���� = ����(������ + ����) for  � = 0,1, … . ,� −
1,                                (6) 
               � = ��.                                                           (7)                                     
where M is the number of layers in the network. The 
neurons in the first layer receive external inputs. 

 The next step is to propagate the sensitivities 
backward through the network: 

												�� = −2�̇�(��)(� − �),	       (8)                                                        
			�� = �̇�(��)(����)�����,� = � − 1,… ,2,1     (9) 
where 

�̇�(��) = 	�

�̇�(��
�) 0…0

0 �̇�(��
�)	…0

0 0	…	�̇�����
� �

�                               (10) 

 Finally, the weights and biases are updated using 
the approximate steepest descent rule: 

                  ��(� + 1) = ��(�) − ���(����)�,     (11) 
            								��(� + 1) = ��(�) − ���          (12) 
where 
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                          (13) 

Since the performance index F in Eq. (2) is a function of 
weights and biases, � = [����	 … ��] and can be given by 

	�(�) =
�

�
∑ ��

�(�)�
���                                    (14) 

The performance of the neural network can be improved 
by modifying � till the desired level of the performance 
index, �(�) is achieved. This is achieved by minimizing 
�(�) with respect to � and the gradient required for this is 
given by 
∇�(�) = ��(�)�(�)                               (15) 
where, �(�) is the Jacobian matrix given by 
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                                      (16) 

and �(�) is the error for all the inputs. The gradient in (15) 
is determined using back propagation algorithms discussed 
above, which involves performing computations backward 
through the network. The process stops if a pre-specified 
criterion is fulfilled, i.e. if the values of the gradient are 
smaller than a given threshold.   

This gradient is then used by different algorithms 
to update the weights of the network. These algorithms 
differ in the way they use the gradient to update the 
weights of the network and are known as the variants of 
the back propagation algorithms. 

Gradient descent algorithm with other variants is 
discussed in what follows. 
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i. Gradient Descent 

The network weights and biases, � is modified in a 
direction that reduces the performance `function in (14) 
most rapidly i.e. the negative of the gradient of the 
performance function (Hagan et al., 1996). The updated 
weights and biases in this algorithm are given by  

���� = �� − ��∇��                                                     (17) 

where, ��  is the vector of the current weights and biases, 
∇��  is the current gradient of the performance function and 
��  is the learning rate. 

ii. Scaled Conjugate Gradient Descent 

Algorithm (SCGDA) 

The gradient descent algorithm updates the weights and 
biases along the steepest descent direction but is usually 
associated with poor convergence rate as compared to the 
Conjugate Gradient Descent algorithms, which generally 
result in faster convergence (Moller, 1993). In the 
Conjugate Gradient Descent algorithms, a search is made 
along the conjugate gradient direction to determine the step 
size that minimizes the performance function along that 
line.  

This time consuming line search is required during all 
the iterations of the weight update. However, the Scaled 
Conjugate Gradient Descent algorithm does not require the 
computationally expensive line search and at the same time 
has the advantage of the Conjugate Gradient Descent 
algorithms (Moller, 1993). The step size in the conjugate 
direction in this case is determined using the Levenberg-
Marquardt approach. The algorithm starts in the direction 
of the steepest descent given by the negative of the 
gradient as  

�� = −∇��                                                                   (18) 

 The updated and weights and biases are then given by 

���� = �� + ����                                                        (19) 

where ��  is the step size determined by the Levenberg-
Marquardt algorithm (Hagan and Menhaj., 1994). The next 
search direction that is conjugate to the previous search 
directions is determined by combining the new steepest 
descent direction with the previous search direction and is 
given by 

�� = −∇�� + ������                                                 (20) 

The value of ��  is given by 

�� =
|∇����|

��∇����∇��

��
                                               (21) 

where ��  is given by 

�� = ��
�∇��                                                             (22) 

iii. Levenberg-Marquardt (LM) Algorithm  

Since the performance index in (14) is sum of squares of 
nonlinear function, the numerical optimization techniques 
for nonlinear least squares can be used to minimize this 
cost function. The Levenberg-Marquardt algorithm, which 
is an approximation to the Newton’s method is said to be 
more efficient in comparison to other methods for 
convergence of the Back Propagation algorithm for 
training a moderate-sized feed forward neural network 
(Hagan and Menhaj., 1994). As the cost function is a sum 
of squares of nonlinear function, the Hessian matrix 
required for updating the weights and biases need not be 
calculated and can be approximated as  
� = ��(�)�(�)                                                              (22) 
The updated weights and biases are given by 
���� = �� − [��(�)�(�) + ��]����(�)�(�)               (23) 
where �  is a scalar and I is the identity matrix. 
 
iv. Automated Bayesian Regularization (BR) 

Regularization as a mean of improving network 
generalization is used within the Levenberg Marquardt 
algorithm. Regularization involves modification in the 
performance function. The performance function for this is 
the sum of the squares of the errors and it is modified to 
include a term that consists of the sum of squares of the 
network weights and biases. The modified performance 
function is given by 
���� = ���� + ����                                               (24) 

Where SSE and SSW are given by 
��� = ∑ ��

�(�)�
���                                                      (25) 

��� = ∑ ��
��

���                                                         (26) 

where � is the total number of weights and biases, �� in the 

network. The performance index in (24) forces the weights 
and biases to be small, which produces a smoother network 
response and avoids over fitting. The values  � and � are 
determined using Bayesian regularization in an automated 
manner (Foresee and Hagan., 1997) and (Mackay, 1992)  

The Baye’s theorem relates two variables (or events), 
A and B, based on their prior (or marginal) probabilities 
and posterior (or conditional) probabilities as in (27): 

�(�|�) =
�(�|�)�(�)

�(�)
                                              (27) 
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where �(�|�) is the posterior probability of A conditional 
on B. �(�|�) is the prior of B conditional on A, and �(�) 
the non-zero prior probability of event B, which functions 
as a normalizing constant. In order to find the optimal 
weight space, objective function (24) needs to be 
minimized, which the equivalent of maximizing the 
posterior probability function is given as in (28) (Hagan et 
al.,1996): 

�(�, �|� ,�) =
�(� |� ,� ,�)�(� ,�|�)

�(�|�)
                           (28) 

where � and � are the factors needed to be optimized, D is 
the weight distribution, M is the particular neural network 
architecture, �(�|�) is the normalization factor, 
�(�, �|�) is the uniform prior density for the 
regularization parameters and   �(�|�, �,�) is the 
likelihood function of D for given �, �,�.  

Maximizing the posterior function �(�, �|� ,�) is 
equivalent of maximizing the likelihood function 
�(�|�, �,�). As a result of this process, optimum values 
for � and � for a given weight space are found. 
Afterwards, algorithm moves in to LM phase where 
Hessian matrix calculations take place and updates the 
weight space in order to minimize the objective function. 
Then, if the convergence is not met, algorithm estimates 
new values for � and � and the whole procedure repeats 
itself until convergence is reached. 
 

v. Neural Network Autoregressive 

with Exogenous Input(NNARX)  

The Neural Network Autoregressive with Exogenous 
Input(NNARX) (NNARX) is a recurrent dynamic network, 
with feedback connections enclosing several layers of the 
network. The NNARX model is based on the linear ARX 
model, which is commonly used in time-series modelling 
and forecasting. The NNARX model can be represented as 
follows: 
�(�) = �(�(� − 1), �(� − 2)… , �(� − �), �(� − 1), �(� −
2), … , �(� − �))             (29) 
where the next value of the dependent output signal �(�) is 
regressed on previous values of the output signal and 
previous values of an independent (exogenous) input 
signal. The output is feed backed to the input of the feed-
forward neural network as part of the standard NNARX 
architecture as shown in Fig 2.  

Since the true output is available during the training, 
one could create a series parallel architecture in which the 
true output is used instead of feeding back the estimated 
output as shown in Fig 3. This has two advantages, first is 
that the input to the feed-forward network is more accurate, 
second is that the resulting network has purely feed-
forward architecture and static back propagation can be 
used for training. 

 

Dynamic networks can be trained in the same gradient-
based algorithm that is applied in back propagation. 
Although the method of training is same with static 
networks but the performance of this algorithm in dynamic 
networks is different from static networks because the 
gradient is computed in a more complex way.  
 
vi. Proposed Hybrid Models  

In this study, two hybrid models were proposed for 
forecasting conditional volatility of inflation Rate in 
Nigeria. Initially, in each of the proposed models, a 
preferred GARCH model is identified upon which the 
hybrid model is built. For this purpose, optimum lags for 
each GARCH model was estimated using AIC and BIC 
indices.  Then, each model is used for predicting some 
forecasts of the price returns volatility of inflation rate and 
the preferred model was selected according to pre-defined 
measures. 
 

a.  Hybrid model I 

The underlying concept for the first hybrid model is that 
there are some explanatory factors other than historical 
prices that affect the future price returns volatility in the 
Market.  We forecast volatility of price returns for inflation 
rate in Nigeria with a number of market variables which 
affects its price returns. 
Selection of the input variables depends on the knowledge 
of which ones affect volatility significantly. Some 
endogenous variables related to the historical performance 
of the returns such as price returns, squared price returns, 
price, price squared, etc (based on the preferred model) are 
used. The exogenous variables which likely influence price 
returns were also considered. Both the endogenous and 
exogenous variables were used as the input variables to the 
Artificial Neural Network  (ANN) model and the standard 
deviation was considered to be target output for the 
training the network. 
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Fig 6: Schematic representation of hybrid model I 

 
b. Hybrid model II 

In order to keep the properties of the best fitted GARCH 
model while enhancing it with an ANN model, we have to 
somehow introduce the autocorrelation structure of data 
(captured by GARCH model) to the network.  Otherwise, 
the hybrid model could not recognize the underlying 
autocorrelation from a single set of estimated time series. 
Therefore, one has to generate synthetic series with the 
same statistical properties as the estimated volatility. 
Simulation is a widely used technique to generate synthetic 
series. Hybrid model II is constructed using several 
simulated GARCH series instead of a single estimated 
series.  

The number of simulated series for training the Neural 
Network depends on nature of the problem and type of 
data. It also takes exactly the same market variables as 
hybrid model I as input. The standard deviation is also be 
used as the output target of the network. It is expected that 
this model better captures the characteristics of the 
GARCH model as well as the impacts of the market 
variables. 

 

 
Fig 7: Schematic representation of hybrid model II 

 
VI. Training of the Proposed Hybrid 

Models 

The neural network proposed in section 3.3 and sub-
sections 3.3.1 and 3.3.2 were trained with training 
algorithms described in section 3.1 and using the weights 
and biases updates algorithms in subsection 3.1.1, but the 
gradient computation is based on the principle of dynamic 
learning described in section 3.2.  

An Intel (R) Core (TM) i3-2310M CPU @ 2.10GHz 
processor was used to train the proposed neural network 
models. Figures 8 and 9 are examples of the trained NARX 
configuration which are used for training purposes which 
are generally referred to as (Open loop), multi-step ahead 

prediction also known as (Closed loop). After the training 
is done in an open loop (also called series-parallel 
architecture, including the validation and testing steps.  

The typical workflow is to fully create the network in 
open loop, and only when it has been trained (which 
includes validation and testing steps) it is then transformed 
to closed loop for multi-step ahead prediction. We can now 
use the closed-loop (parallel) configuration to perform an 
iterated prediction of nth time steps. 
 

 
Fig 8: Open-loop Hybrid Model I Architecture for INFRT 

Volatility Forecaster 
 

 
Fig 9: Closed-loop Hybrid Model I Architecture for INFRT 

Volatility Forecaster 
 
Moreover, Eviews statistical software was used to calibrate 
GARCH models as well as preliminary time series 
analysis. Econometric toolbox in the MATLAB 
programming language was used in simulating the 
synthetic series for the preferred GARCH models. Having 
selected EGARCH (2, 1) as the best for predicting inflation 
rate returns volatilities, it was used in simulating some 
synthetics series as part of the building blocks for hybrid 
model II which is depicted by figure 10. The figure shows 
the log returns of hundred synthetic series from EGARCH 
(2,1) and its confidence bounds. 

 
Fig 10:  Confidence intervals for the simulated synthetic 

series for the inflation rate. 
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VII. Results  

Neural Network toolbox was adopted for the 
implementation and training of the hybrid models. 
 
Table 1: Descriptive statistics of different training 
algorithms for Hybrid models I and II 
 

 
 
Table 1 summarizes the results of training the proposed 
networks using the four training algorithms discussed 
above. Each entry in the table represents 100 different 
trials, with random weights taken for each trial to rule out 
the weight sensitivity of the performance of the different 
training algorithms. The network was trained in each case 
till the value of the performance index in equation (14) was 
0.0000. The average time required for training the hybrid 
models using the Levenberg-Marquardt algorithm was 
generally the least, whereas, maximum time is required for 
training the network using Scaled Conjugate Gradient 
Descent algorithm for Hybrid Model I. The training 
algorithm employing Bayesian Regularization 
continuously modifies its performance function and hence, 
takes more time on average to train compared to the 
Levenberg-Marquardt and Scaled Conjugate Gradient 
Descent algorithms. In the hybrid model II, when more 
simulated synthetic series are included, thereby expanding 
the size and complexity of the network, Bayesian 
Regularization takes far more time to train than even 
Hybrid Model I. At that level, it was very slow in 
convergence.  

Similarly some tools were used to confirm/validate the 
network performance in relation to the performance index 
defined in equation (14).  These tools are based on some 
basic properties of accurate predictions in terms of the 
validated mean squared errors and autocorrelation of errors 
at different time steps. In the first place an average best 
validation of a mean squared error from each of the three 
training algorithms were obtained after hundred trials are 
shown in table 2 for hybrid models I and II in which 
Bayesian Regularization (BR) achieved the best 
result(minimum error) but with largest number of 
iterations. 
 
Table 2:  Performance of the trained Hybrid model I and II 

 

 
 
The neural networks trained using the training algorithms 
listed in table 1 was tested on the same Central Processing 
Unit (CPU).   The test datasets consisted of data points not 
included in the training sets. The actual (target) and 
predicted (output) values of the volatilities according to the 
hybrid models I and II using the training algorithms with 
least validation prediction error as shown in table 2 were 
measured. This is compared in a regression line as shown 
in Figs 11 and 12 for hybrid I and II respectively. The 
color line represents the linear regression, the dash line 
represents the perfect match � = �, and the circles 
represent data points. Attached to these graphs are the 
correlations between the targets and network outputs. 

In Figs 13 and 14, the response outputs are compared 
to response targets by the hybrid model I and II 
respectively across training and testing categories. These 
graphs, just like the previous ones indicate promising 
performance because the two values compares very well. 
 

 
 

 
 
Fig.13: Response of output of Hybrid model I for Inflation 

Rate Volatility Forecaster using BR Algorithm 
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Fig. 14: Response of output of Hybrid model II for 

Inflation Rate Volatility 
 

VIII. Forecasting Profiles of the 

Trained Neural Networks 

The datasets used to train, validate and test the proposed 
models covered the periods from January, 1995 to 
February, 2015. The remaining datasets covering the 
periods from March,2015 to February, 2016, which were 
not utilized in the calibration phase but used in this section 
to evaluate the forecasting performance of the hybrid 
models.  

The trained hybrid models were also used to forecast 
the volatilities of the various assets returns within these 
periods (March, 2015 to February, 2016) and compared 
with the standard deviation as a measure of the actual 
volatility in order to compute some fitness measures to 
evaluate the models performances. 

Table 3 presents the result of the applications of the 
proposed hybrid models for forecasting inflation rate 
returns volatilities in 6 and 12 months ahead. 
In this table are the forecasts according to the hybrid 
models, EGARCH (2, 1) and Hajizadeh et al hybrid model 
based on EGARCH (3, 3).  

The computational results show that EGARCH model 
outperforms hybrid model I and Hajizadeh et al, (2012) but 
could not perform as good as Hybrid model II. It is 
therefore observed that Hybrid model II perform better 
than all three other models. That is likely due to inclusion 
of simulated series as extra inputs to hybrid model II. The 
forecasts of these models were also depicted in the figures 
18 and 19 for 6 and 12 Months ahead forecast respectively. 
 

Table 3: Hybrid models performance to volatility 
forecasting 

 

 

 
Fig 18: Hybrid Models performance to Volatility 
Forecasting of Inflation Rate for 6 Months ahead 

 

 
Fig 19: Hybrid Models performance to Volatility 

Forecasting of Inflation Rate for 12 Months ahead.   
 

IX. Conclusion 

This research is based on the application of GARCH 
models. One of the limitations is that these models produce 
better results in relatively stable markets and could not 
capture violent volatilities and fluctuations. 

In this research, GARCH family of models have been 
integrated in to the recurrent dynamic neural networks to 
form hybrid models which were trained using variants of 
back propagation training algorithms as opposed to recent 
work of (Hajizadeh et al., 2012) that also used hybrid 
models to forecast volatility of S & P 500 index return but, 
was solely trained with standard steepest descent Back 
Propagation.  

The accuracy-wise comparison of three different 
gradient based Back Propagation training algorithms, i.e., 
Levenberg-Marquardt (LM), Scaled Conjugate Gradient 
Descent (SCGD) and Bayesian Regularization (BR) is 
investigated. Four types of GARCH family of models have 
been calibrated and used for forecasting the Inflation Rate 
based on some macro-economic variables. Then, their 
performances have been compared to pre-defined 
measures.  

The best model turns out to be EGARCH (2, 1). To 
enhance the forecasting power of the selected model, two 
hybrid models have been constructed using Artificial 
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Neural Networks. The inputs to the proposed hybrid 
models include the volatility estimates obtained by the 
fitted EGARCH models as well as other explanatory 
variables. Furthermore, the second hybrid model takes 
simulated volatility series as extra inputs. Such inputs have 
been intended to characterize the statistical properties of 
the volatility series when fed in to Neural Networks. 

The results show that though it took longer time and 
number epochs to train the hybrid models by Bayesian 
Regularization Algorithms, it gives more accurate 
predictions than both the Levenberg-Marquadrt and Scaled 
Conjugate Gradient Descent Algorithms.  

The results also demonstrate that the second hybrid 
model, using simulated volatility series, provides better 
volatility forecasts. This model significantly improves the 
forecasts over the ones obtained by the best EGARCH 
models and Hajizadeh et al, (2012). 
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