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Abstract — This paper aimed at modelling monthly 
rainfall of three locations in Nigeria: Asaba, Benin and 
Port-Harcourt. Time series model; Auto-Regressive 
Integrated Moving Average (ARIMA) model was 
adopted. Monthly rainfall data generated from 
statistical database of Central Bank of Nigeria in some 
towns were used. The trend rainfall in Port-Harcourt, 
Asaba and Benin exhibit Non-stationarity. First 
difference was taken for all the locations to achieve 
stationarity.  The Autocorrelation Function ACF plot, 
Partial Autocorrelation Function PACF, from the model 
selection criterion ARIMA (1,1,3) model is best use to fit 
a rain fall data for duration 2007 – 2012. In Port-
Harcourt, Asaba and Benin region an ARIMA (1,1,2) 
model is best use in fitting the rainfall data. The output 
of model fitted shows that Asaba estimate of AIC, BIC, 
AICC, loglikelihood and sigma square perform better 
than the Benin with the same ARIMA model of (1,1,3). 
The residual plot of ACF and PACF shows that the data 
are normally, independent and identically distributed. 
The predicted forecast of figure 8, 15 and 21 shows a 
seasonal trend of future value which is present in the real 
data from the rainfall. 
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I. Introduction  

Dry seasons and raining seasons are distinguished 
period of the year (January Pto December). Generally, in 
some parts of Nigeria the 5 months period (October, 
November, December, January and February) are 
considered as dry season while 7 months period of the year 
(March, April, May, June, July, August and September) are 

taken as rainfall season depending on the weather and 
climatic situation. 
Climatic change do bring about variation in the length and 
volume of rainfall, creating shorter or longer rainfall 
periods. This variation among other factors affect 
agricultural production, weather condition in terms of 
temperature, humidity. The geographical location of a place 
also affect the length of seasonal durations. This paper 
compare three locations (towns) in Nigeria; Asaba, Benin 
and Port-Harcourt monthly rainfall. 
 

II. DATA SOURCE AND DATA MANIPULATION   

Secondary sources of data collection was adopted. The data 
on Rainfall in three locations in some Nigeria Towns were 
obtained from the data base of the Central Bank of Nigeria 
through their webpage at 
http://www.cbn.gov.ng/search/runsearch.asp?q=rainfall%2
0data.  

These dataset was collected for the periods spanning 
2007 to 2014 on the amount of monthly rainfalls in Nigeria. 
 

III. MATERIALS AND METHODS 

A time series is a sequence of ordered data. The “ordering” 
refers generally to time. We made use of Time Series 
Analysis to detect patterns of change in statistical 
information over the regular interval of time. We project the 
pattern to arrive at an estimate for the future. All statistical 
forecasting methods are extrapolatory in nature i.e they 
involve the projection of past patterns or relationship into 
the future. Time series data can be stationary and non-
stationary. However, theory of time series is concerned with 
stationary time series. A time series data {Yt} is said to be 



Professional	Statisticians	Society	of	Nigeria 
																																									Edited Proceedings of 2nd International Conference																								                   Vol. 2, 2018 

444 

 

 
© 2018, A Publication of Professional Statisticians Society of Nigeria 

 

stationary if there is no systematic change in its mean and 
variance and if all periodic variations have been removed. 
Such series is assumed to have been in a state of statistical 
equilibrium where the statistical properties of a stationary 
process does not change over time Shittu (2011). A time 
series is said to be stationary if it has constant mean and 
variance (Osabuohien, 2013); the paper further elaborated 
that a stationary time series {Yt} follows an autoregressive 
moving average model of order p and q (denoted as ARIMA 
(p, d, q) if it satisfies the difference equation; 
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Y is an ARIMA (p,d,q) process if  
d Yt is ARIMA (p, d, 
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Where i  and j  are constants such that the zeros of 

equation are all outside the unit circle for stationarity and 
invertibility respectively. For a seasonal series, the time plot 
reveals the existence of a seasonal nature in data and the 
ACF or Correlogram exhibits a spike at the seasonal lag. 
Box (1976), Madsen, (2008), Meese (1982) have 
contributed in formulation of the theory and practice of 
Time Series Analysis (TSA) of ARIMA models. The 
knowledge of the theoretical properties of the models 
provides basis for their identification and estimation 
(Osabuohien, 2013). 
Auto-Regressive Process 
Autoregressive processes are regressions on themselves. A 
p-order autoregressive process AR(p). {Yt} satisfies the 
equation (Yule (1926)) 

tptptttt eYYYYY   ...332211

                     

(6)
 

The current value of the series Yt is a linear combination of 
the p most recent past values of itself plus an “innovation” 
term that incorporates everything new in the series at time t 
that is not explained by the past values. Thus, for every t, we 
assume that is independent of Yt−1, Yt−2, Yt−3, ..., Yt−q. 

 

Moving Average Processes 
Moving average models were first considered by Slutsky 
(1927) and Wold (1938) as cited by Mohammed (2014). The 
Moving Average Series can be written as 

           qtqttttt eeeeeY    ...332211                              

(7)
 

We call such a series a moving average of order q and 
abbreviate the name to MA(q). where, Yt is the original 
series and et is the series of errors. The current value of the 
series Yt is a linear combination of the p most recent past 
values of itself plus an “innovation” term that incorporates 
everything new in the series at time t that is not explained 
by the past values. Thus, for every t, we assume that is 
independent of Yt−1, Yt−2, Yt−3, ..., Yt−q . 
 
Autoregressive Integrated Moving Average (ARIMA) 
Model 
The Box and Jenkins (1970) procedure is the milestone of 
the modern approach to time series analysis. Given an 
observed time series, the aim of the Box and Jenkins 
procedure is to build an ARIMA model. In particular, 
passing by opportune preliminary transformations of the 
data, the procedure focuses on Stationary processes. We 
fitted the Box-Jenkins Autoregressive Integrated Moving 
Average (ARIMA) model. This model is the generalized 
model of the non-stationary ARMA model denoted by 
ARMA (p,q) can be written as  

qtqttttptptttt eeeeeYYYYY    ...... 332211332211

 (8)                                           
Where, Yt is the original series, for every t, we assume that 
is independent of Yt−1, Yt−2, Yt−3, …, Yt−p . 
A time series {Yt} is said to follow an integrated 
autoregressive moving average (ARIMA) model if the dth 
difference Wt = ∇dYt is a stationary ARMA process. If {Wt} 
follows an ARMA (p,q) model, we say that {Yt} is an 
ARIMA(p,d,q) process. Fortunately, for practical purposes, 
we can usually take d = 1 or at most 2. 
Consider then an ARIMA (p,1,q) process. With  

1 ttt YYW   we have 
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Box and Jenkins procedure’s steps 
i. Preliminary analysis: create conditions such that the data 
at hand can be considered as the realization of a stationary 
stochastic process. 
ii. Identification: specify the orders p, d, q of the ARIMA 
model so that it is clear the number of parameters to 
estimate. Recognizing the behavior of empirical 
autocorrelation functions plays an extremely important role. 
iii. Estimate: efficient, consistent, sufficient estimate of the 
parameters of the ARIMA model (maximum likelihood 
estimator). 
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iv. Diagnostics: check if the model is a good one using tests 
on the parameters and residuals of the model. Note that also 
when the model is rejected, still this is a very useful step to 
obtain information to improve the model. 
v. Usage of the model: if the model passes the diagnostics 
step, then it can be used to interpret a phenomenon, forecast. 
 
Residuals Diagnostic Checking 
Jarque-Bera Test 
We can check the normality assumption using Jarque-Bera 
(Jarque & Bera, 1980) test which is a goodness of fit 
measure of departure from normality, based on the sample 
kurtosis (k) and skewness(s). The test statisticsJarque-Bera 
(JB) is defined as 
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Where n is the number of observations and k is the number 
of estimated parameters. The statistic JB has an asymptotic 
chi-square distribution with 2 degrees of freedom, and can 
be used to test the hypothesis of skewness being zero and 
excess kurtosis being zero, since sample from a normal 
distribution have expected skewness of zero and expected 
excess kurtosis of zero. 
 
Ljung-Box Test 
Ljung-Box Test can be used to check autocorrelation among 
the residuals. If a model fit well, the residuals should not be 
correlated and the correlation should be small Box and 
Ljung, 1978. In this case the null hypothesis is 
H0 : ρ1(e) = ρ2(e) =……= ρk(e) = 0 is tested with the Box-
Ljung statistic 
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Where, N is the no of observation used to estimate the 
model. This statistic Q approximately follows the chi-square 
distribution with (k-q) df, where q is the no of parameter 
should be estimated in the model. If Q is large (significantly 
large from zero), it is said that the residuals autocorrelation 
are as a set are significantly different from zero and random 
shocks of estimated model are probably auto-correlated. So 
one should then consider reformulating the model. 
 

IV. ANALYSIS, RESULTS AND 

DISCUSSION 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

a. Port-Harcourt 

 
 
 
 
 
 
 
 
 
 

b. Asaba 

 
 
 
 
 
 
 
 
 
 
 

c. Benin City 

Figure 1 : Time Series Plot of Monthly Rainfall 2007 to 
2014 of three locations 
 
The data series plots indicate non-stationary in the three 
locations; as the series wanders up and down for long 
periods. Consequently, we will take a first difference of the 
data. The differenced data plot is shown in Figure 2.  
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Figure 2: First Difference Plot of Monthly Rainfall 2007 
to 2014 of the locations. 

 
The first difference of the series shows some level of 
stationarity in the data in the three locations. 
 

 
Figure 3: ACF Plot of Monthly Rainfall 2007 to 2014 of 

the locations 

 
The ACF plots in Fig 3 indicate Moving average of order 3 
i.e. MA (3) 
 

 
Figure 4: PACF Plot of Monthly Rainfall 2007 to 

2014 of the locations. 

 
Augmented Dickey-Fuller Test 

 
Dickey-Fuller = -6.8576, Lag order = 4, p-value = 0.01 
alternative hypothesis: stationary  
  
The test above shows a stationary series.  
 
The ACF  and PACF shown in Figure 3 and 4   is suggestive 
of an AR (1) and MA (3) model. So an initial candidate 
model is an ARIMA (1,1,3). There are no other obvious 
candidate models.  
The PACF  and ACF shown in Figure 3 and 4   is suggestive 
of an AR(1) and MA (2) model. So an initial candidate 
model is an ARIMA (1,1,2). There are no other obvious 
candidate models. 
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V. CONCLUSION 

The Time plot in Figure 1, 9 and 16 shows the original trend 
(pattern) of rainfall data in Port-Harcourt, Asaba and Benin 
exhibit Non-stationarity. First difference was taken for all 
the locations to make it Stationary, that was shown in Figure 
2, 10 and 17.   

The Autocorrelation Function ACF  plot in Figure 3, 11 
and 17. Partial Autocorrelation Function PACF  Figure 4, 
12 and 18. From the model selection criterion 
ARIMA(1,1,3) model is best use to fit a rain fall data for 
duration 2007 – 2012. In Port-Harcourt, Asaba and Benin 
region an ARIMA (1,1,2) model is best use in fitting the 
rainfall data.  

The output of model fitted shows that Asaba estimate of 
AIC, BIC, AICC, loglikelihood and sigma square perform 
better than the Benin with the same ARIMA model of 
(1,1,3). The residual plot of ACF and PACF shows that the 
data are normally, independent and identically distributed. 
The predicted forecast of figure 8, 15 and 21 shows a 
seasonal trend of future value which is present in the real 
data from the rainfall.  
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