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Abstract — Poisson distribution plays an important role 
in count data analysis, but it cannot model some data 
with over-dispersion or under-dispersion because of its 
classical equi-dispersion property. Nevertheless, in an 
effort to handle such a situation, a number of works have 
been proposed. These have resulted in the development 
of Poisson mixture distributions such as the Negative 
Binomial, Poisson – Exponential-Gamma, Poisson – 
Exponential and Poisson-Lindley distributions among 
others. In this Paper, these distributions were applied to 
real-life datasets from different fields of study. Their 
Goodness-of-fit has been discussed based on the values 
of; – �������, Akaike Information Criteria (AIC) and 
Bayesian Information Criteria (BIC). These were 
achieved by estimating the parameters of the 
distributions using the real-life datasets considered. The 
distributions fit the datasets satisfactorily but Poisson – 
Exponential-Gamma distribution is the best model. On 
the basis of which it is concluded that the distribution 
can serve as an important alternative to real-life count 
data modeling. 

Keywords- Poisson, Poisson – Exponential-Gamma, Poisson-
Exponential, Poisson-Lindley, Negative Binomial, Goodness-of-
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i. Introduction  

Poisson distribution (PD) is a discrete probability function 
that expresses the probability of a given number of events 
occurring in a fixed interval of time or space, especially if 
these events occur with a known constant rate and 
independent of time (Anderson et al, 2012; Donelly, 2012; 
Jaggia & Kelly, 2012). It can also arise as an approximation 
to the binomial distribution when the proportion, p, is small 
and the size, n, is large (Triola, 2007).  

It is often known as the distribution of rare events, 
thereby dealing with a process where discrete events occur 
in a continuous but finite interval of time or space with the 

conditions; for a small interval, the probability of event 
occurring is proportional to the size of the interval, the 
probability of more than one occurrence in small interval is 
negligible (that is, they are rare events and must not occur 
simultaneously), each occurrence must be independent of 
others and must be at random (Anderson et al., 2012; 
Donelly, 2012; Jaggia & Kelly, 2012). Thus, the distribution 
(PD) plays an important role in count data analysis. 
However, it cannot model some data with over-dispersion or 
under-dispersion because of its equi-dispersion property.  

Similarly, for fitting Negative Binomial distribution 
(NBD) to count datasets, the datasets have to be over-
dispersed, that is the mean is less than the variance (Shanker 
& Hagos, 2015). In biological and medical sciences, these 
conditions are not fully satisfied. Nevertheless, a number of 
works have proposed methods for modeling count data that 
violate this classical property. These have resulted to the 
development of Poisson mixture distributions apart from the 
Negative Binomial distribution (Cook, 2009; Kongrod et al, 
2014), the Poisson – Exponential-Gamma (Umar, 2019), 
Poisson – Exponential (Umar, 2019) and Poisson-Lindley 
distributions (Sankaran, 1970) among others. 

Analysis and modeling of lifetime data are crucial in 
applied sciences and other fields of knowledge. Thus, a 
number of models were in-exhaustively constructed to 
facilitate better modeling and significant progress (Asad et 
al, 2018). This has attracted the attention and interest of 
researchers all over the world. These models have been 
shown to perform better than one another in the various 
fields tested. However, this work is carried out to apply 
some of these models to count data especially from 
community health and other fields of knowledge. 
 

II. RESEARCH METHODOLOGY 

This The Poisson distribution is defined by its probability 
mass function (R Core Team, 2010) as follows; 

�(�; �) =
�����

�!
; � = 0, 1, 2, … , � > 0  

     (1) 
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A Poisson mixture was used and obtained the Negative 
Binomial distribution (Greenwood & Yule, 1920), Poisson 
– Exponential-Gamma (Umar, 2019), Poisson – Exponential 
(Umar, 2019) and Poisson-Lindley distributions (Sankaran, 
1970) among others. The Negative Binomial distribution 
was originally derived as limiting case of the Gamma-
Poisson distribution, where the mixing distribution of the 
Poisson rate is Gamma distribution, i.e. the � itself is a 
random variable distributed as a Gamma distribution with 
shape parameter � = � and a scale parameter  � =
�(1 − �)�� (Greenwood & Yule, 1920). 
The Poisson mixture distribution can be obtained by putting 
(1) and the equation of the distribution to be mixed in the 
expression below (Greenwood & Yule, 1920); 

�(�; �, �) = ∫ ����(�)(�) ∙ �(�)��
�

�
   (2) 

Through this expression in (2), the Negative Binomial 
distribution (Cook, 2009), Poisson – Exponential-Gamma 
(Umar, 2019), Poisson – Exponential (Umar, 2019) and 
Poisson-Lindley distributions (Sankaran, 1970) among 
others were obtained. The mathematical expressions of 
these distributions together with their graphical 
representations, important properties and parameter(s) 
estimates with their goodness-of-fit (in comparison with 
other related distributions) were discussed accordingly. 
The p.m.f. of the Poisson – Exponential-Gamma distribution 
is defined (Umar, 2019) as follows: 

�(�; �, �) =
�

����(�)��!
�

�(���)��!�����(���)�(���)

(���)����� � ;  � =

0, 1, 2, … , � > 0, � > 0                              (3) 

It can be easily verified that when � = 1, the Poisson-
Exponential-Gamma distribution in (3) reduces to a 
Poisson-Exponential distribution (Umar, 2019), and a 
Poisson-Lindley distribution when � = 2 (Sankaran, 1970). 
That is; 

�(�; 1, �) =
�

(���)��� ; � = 0, 1, 2, 3, … , � > 0  (4) 

which is the Poisson-Exponential distribution, and 

�(�; 2, �) =
��(�����)

(���)��� ; � = 0, 1, 2, 3, … , � > 0           (5) 

which is the Poisson-Lindley distribution (Sankaran, 1970). 

III. APPLICATIONS 

In this section, the goodness-of-fit of the distributions is 
discussed with an application to real-life datasets. The 
parameters of the distributions were solved using the MLE 

method while the goodness-of-fit was evaluated using the 
Akaike Information Criterion (AIC, Akaike, 1974), 
Bayesian Information Criterion (BIC, Schwarz, 1978) and –
2logLik with their respective statistics given below. 

��� = −2ln� + 2�   (6) 
��� = −2ln� + �ln�   (7) 

where k is the number of parameters and n is the sample size. 
The distribution that has a lower value of these criteria is 
judged to be the best among others. 

Data Description 

Dataset 1: This consists of the number of yeast cell counts 
per square reported by Shanker & Hagos (2015). 
Dataset 2: This is the number of times a member’s name 
appeared in an Edited Conference Proceedings (PSSN 
Journal of 2018) according to membership registration. 
Dataset 3: This is the number of European red mites on 
Apple leaves (Shanker & Hagos, 2015). 

Tables 1 – 3 present the observed and expected 
frequencies of the datasets. The expected frequencies 
according to the Poisson (PD), Poisson-Exponential (PED), 
Poisson-Lindley (PLD) and Poisson – Exponential-Gamma 
(PEGD) distributions were given and compared. It can be 
seen that the distributions gave satisfactory fits to the 
datasets. This can also be confirmed by the values of AIC, 
AICC, BIC and the graphs in Figures 1 – 3. 
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Table 1: Observed and Expected frequencies of yeast cell counts per square 

The number of Cells 
per square 

Observed 
Frequency 

Expected Frequency 

PD PED PLD PEGD 

0 128 118.1 128.1 127.4 128.1 

1 37 54.3 40.4 41.1 40.9 

2 18 12.3 12.7 12.9 12.6 

3 3 1.9 4.0 3.9 3.8 

4 1 0.2 1.3 1.2 1.1 

5 0 0.0 0.4 0.4 0.3 

TOTAL 187 187 187 187 187 

ML Estimates  ��=0.46 ��=2.17 ��=2.75 ��=1.51 

     ��=2.50 

-2logLik  195.30 176.16 660.68 149.64 

AIC  197.30 178.16 662.68 153.64 

AICC  197.37 178.23 662.75 153.71 

BIC  200.53 181.39 665.91 154.88 
 
 
 

 

 
Figure 1: Graph of the observed and expected frequency of yeast cell counts per square 
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Table 2: Observed and Expected frequencies of Authors’ name in PSSN Journal, Volume 2 

The number of times a name 
appeared 

Observed 
Frequency 

Expected Frequency 

PD PED PLD PEGD 

0 311 300.3 305.3 236.0 310.2 

1 40 57.8 49.2 84.3 36.5 

2 10 5.6 7.9 29.1 11.3 

3 2 0.4 1.3 9.8 3.9 

4 1 0.0 0.2 3.2 1.4 

5 0 0.0 0.0 1.1 0.5 

TOTAL 364 364.1 363.9 363.5 363.8 

ML Estimates  �� = 0.19 �� = 5.20 �� = 2.43 �� = 0.16 

     �� = 1.62 

-2logLik  189.46 182.78 1346.20 110.28 

AIC  191.46 184.78 1350.20 114.28 

BIC  195.36 184.68 1357.99 122.07 
 
 
 

 
Figure 2: Graph of the observed and expected frequency of the number of times a name appeared 
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Table 3: Observed and Expected frequencies of European Red mites on Apple leaves 

The number mites per leaf 
Observed 
Frequency 

Expected Frequency 

PD PED PLD PEGD 

0 38 25.3 37.2 35.8 39.9 

1 17 29.1 19.9 20.7 20.8 

2 10 16.8 10.6 11.4 10.2 

3 9 6.4 5.7 6.0 4.9 

4 3 1.8 3.0 3.1 2.3 

5 2 0.4 1.6 1.6 1.1 

6 1 0.1 0.9 0.8 0.5 

7 0 0.0 0.5 0.6 0.2 

TOTAL 80 79.9 79.4 80 79.9 

ML Estimates  �� = 1.15 �� = 0.87 �� = 1.26 �� = 1.62 

     �� = 1.31 

-2logLik  176.17 142.78 136.85 126.53 

AIC  178.17 144.78 138.85 130.53 

BIC  180.56 147.36 141.24 135.29 
 

 

Figure 3: Graph of the observed and expected frequency of the number of mites per leaf 
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IV Concluding Remarks 

The distributions considered in this paper were estimated 
and compared using real-life datasets. It is obvious that the 
expected frequencies given by the distribution were 
satisfactory. But the values given by the PEGD were closer 
to the observed frequencies of all the datasets considered in 
the paper than the competing distributions.  

It has the minimum values of AIC and BIC and the fits 
were shown graphically. These distributions can, therefore, 
be considered important alternatives to modeling real-life 
count datasets. 
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